scholarly journals Clinical and molecular response to interferon-α therapy in essential thrombocythemia patients with CALR mutations

Blood ◽  
2015 ◽  
Vol 126 (24) ◽  
pp. 2585-2591 ◽  
Author(s):  
Emmanuelle Verger ◽  
Bruno Cassinat ◽  
Aurélie Chauveau ◽  
Christine Dosquet ◽  
Stephane Giraudier ◽  
...  

Key Points Pegylated IFNα induces hematologic and molecular remission in CALR-mutated ET patients. The analysis of additional mutations highlights the presence of subclones with variable evolutions during IFNα therapy.

Blood ◽  
2013 ◽  
Vol 122 (6) ◽  
pp. 893-901 ◽  
Author(s):  
Alfonso Quintás-Cardama ◽  
Omar Abdel-Wahab ◽  
Taghi Manshouri ◽  
Outi Kilpivaara ◽  
Jorge Cortes ◽  
...  

Key Points Treatment with PEG-IFN-α-2a in PV and ET results in a high rate of complete hematologic and molecular responses. Patients failing to achieve complete molecular remission tended to have higher frequencies of mutations in genes other than JAK2.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3185-3185
Author(s):  
Lisa Pieri ◽  
Alessandro Pancrazzi ◽  
Annalisa Pacilli ◽  
Claudia Rabuzzi ◽  
Giada Rotunno ◽  
...  

Abstract Polycythemia vera (PV) and essential thrombocythemia (ET) are myeloproliferative neoplasms (MPN) characterized by the presence of JAK2V617F mutation in >95% and 60% of patients (pts), respectively. This mutation usually affects one allele in ET while most PV pts are homozygous due to mitotic recombination. Acquisition of the JAK2V617F mutation is strongly associated with the germline 46/1 predisposition haplotype. Ruxolitinib is a JAK1/JAK2 inhibitor recently approved for myelofibrosis (MF) and under investigation in PV and ET pts intolerant or resistant to hydroxyurea. We enrolled 24 pts, 11 with PV and 13 with ET, in the phase II INCB18424-256 trial that overall included 34 PV and 39 ET pts. 21/24 pts were still on treatment at 5 years (yr), of which 19 JAK2V617F mutated. Results of the PV cohort have been reported recently (Verstovsek et al. Cancer, 2014): with a median follow up of 35 months (mo), the JAK2V617F allele burden decreased by a mean of 8%, 14%, and 22%, respectively, after 12, 24 and 36 mo. The proportion of pts who achieved a reduction ≥50 % at any time during the 1st yr, 2nd yr, and 3rd yr were 5.9%, 14.7%, and 23.5%, respectively, but no patients achieved a complete remission. In our series of pts we evaluated the JAK2V617F allele burden by two RTQ-PCR methods, according to Lippert (sensitivity, 0.8%) and to Larsen (sensitivity, 0.08%) method. We also analysed by next generation sequencing (NGS; Ion Torrent platform) a series of MPN-associated mutations including TET2, ASXL1, IDH1/2, LNK, CBL, SRSF2, EZH2 and MPL at baseline and at 5 yr of treatment in ruxolitinib treated pts who achieved a >25% JAK2V617F allele burden reduction at 5 yr (n=13/19). JAK2V617F allele burden decreased by a mean of 7%, 11%, and 19% at 12, 24 and 36 mo, and decreased further by a mean of 28% after 60 mo. Three (1 PV, 2 ET) of 19 pts (16%) achieved a 50% or greater allele burden reduction after 2 yr; no additional pts achieved this degree of allele burden reduction even in prolonged follow up. These 3 pts further improved their molecular response to a complete molecular response (CMR) after 5 yr of treatment. Their mean JAK2V617F allele burden was 46.6% at baseline, 28.3%, 16.3%, 8.7% and 0% after 1 yr, 2 yr, 3 yr and 5 yr, respectively. The JAK2 CMR was confirmed in at least one independent sample at 3 mo after first discovery. At this last timepoint, the PV pt was in complete haematological remission according to ELN criteria, the 2 ET pts were in partial remission due to platelet count still >400x109/L: 422x109/L and 812x109/L, respectively. BM histopathology in the 2 ET pts at 5 yr, while they were in CMR, showed still evidence of megakaryocyte hyperplasia. In the PV pt, histopathology at 5 yr is pending; evaluation at 3 yr, a time when she was in complete hematologic remission and JAK allele burden had decreased from 69 to 8%, showed normalization of cellularity, megakaryocyte and myeloid lineage compared to baseline but still slight erythroid hyperplasia. All 3 pts had normal karyotype at baseline that remained unchanged thereafter. CMR for JAK2V617F was confirmed by NGS. The 2 ET pts achieving CMR did not show any additional mutations, while the PV pts presented a TET2 Y867H mutation with an allele burden of 48.9% and 52%, respectively at baseline and 5 yr. No recurrent mutations in genes other than JAK2 were found in all other examined cases at baseline or at 5 yr. In 3 informative pts, we also analysed the proportion of JAK2V617F homozygous, heterozygous and wild type clones by the method of Hasan et al (Leukemia 2013) based on allelic discrimination of 46/1 haplotype and JAK2. We found that JAK2V617F/V617F clones were reduced by a mean of 95.5%, JAK2V617F/WT showed an uneven trend with a mean reduction of 45.54% while JAK2WT/WT conversely increased (mean 61.43%) at 5 yr, suggesting that in a subset a patients who present significant reduction of VF allele burden ruxolitinib may preferentially target the homozygous clones. Until now, complete molecular remission in PV pts has been described only in patients treated with interferon. Our data suggest that a subset of pts who present a rapid and sustained reduction of the JAK2V617F allele burden under ruxolitinib may eventually reach a condition of CMR with prolonged treatment. However, similar to findings with interferon, mutations establishing clonality, such as in TET2, may still persist in patients who eventually show the disappearance of JAK2V617F mutated subclones. Disclosures Verstovsek: Incyte: Research Funding. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 408-408
Author(s):  
Gabriela M. Baerlocher ◽  
Monika Haubitz ◽  
Oliver G. Ottmann ◽  
Olatoyosi Odenike ◽  
Alexander Roeth ◽  
...  

Abstract Background: In essential thrombocythemia (ET), mutations in the calreticulin gene (CALR) are found in the majority of patients that are negative for mutations in the JAK2 and MPL genes. Patients with mutated CALR have a better prognosis and lower thrombosis risk than those with mutated JAK2. Recently, decreases in the CALR mutant allele burden have been observed with interferon alpha after long-term treatment of two- and four-years, respectively (NEJM 2014, 371;2:188-9, Cassinat B. et al.). From the clinical phase II ET study with imetelstat (IT), a first in class, potent, specific inhibitor of telomerase, we reported a substantial and rapid decrease in the JAK2V617F allele burden. 7/8 patients (88%) reached a partial molecular response (MR: >50% reduction from baseline), 6 within the first 3 months and 1 after 12 months. Aims: We aimed to monitor molecular response to imetelstat therapy in ET patients with CALR mutations by serial measurements of CALR mutant allele burden. Methods: The study enrolled patients with ET who had failed or were intolerant to ≥1 prior therapy, or refused standard therapy. During the induction phase, patients were treated with IT 7.5 mg/kg or 9.4 mg/kg IV weekly until attainment of platelet (plt) count ~250-300x109/L. Maintenance phase was then commenced with dosing titrated to platelet count. CALR mutations were detected by Sanger sequencing and quantification of the allele burden was performed by fragment analysis. Results: 18 patients with ET (10 patients with JAK2V617F, 5 patients with CALR and 2 patients with MPL mutations) were enrolled and were treated in the study. 4 of the 5 CALR positive patients achieved complete hematologic responses (CR: Plts < 400 x109/L for 4 weeks) after a median of 6 weeks (range 5 to 14 weeks) and the 5th patient achieved a partial response after 19 weeks, with weekly imetelstat doses starting at 7.5 mg/kg in 2 patients and 9.4 mg/kg in 3 patients. CALR mutations consisted of three cases with type 1 (52-bp deletion; c.1092_1143del), one with type 2 (5-bp insertion; c.1154_1155insTTGTC) and one unknown mutation type (32-bp deletion; c.1092_1124del). Molecular monitoring of CALR allele burden at cycles 3, 6 and 9 demonstrated a rapid decrease in the CALR-mutated patients. 3 pts had a 35-50% reduction from baseline within 4 months and 1 pt had an 11% decrease within 8 months. One of these patients had a 48% reduction in 2 months and a second one had a deepening of response after 10 months to a 55% reduction. All 3 patients with CALR allele burden reductions of 35% or more also achieved hematologic CR. Conclusions: In 4 of 5 patients with CALR-mutated ET, IT induced a rapid CR and in 3 patients hematologic CR was associated with a substantial decrease in the allele burden of 35-50% after 4 months which is more rapid than what has so far been seen with other treatments for ET. Overall 9/13 patients with JAK2 or CALR mutations reached a >35-50% decrease of the mutant clone within 4 months of treatment with IT, providing clinical confirmation of imetelstat’s inhibition of neoplastic clonogenic cell growth in vivo. This additional evidence of reduction in the clonal burden supports IT’s potential to modify the biology of MPNs long-term. Disclosures Baerlocher: Geron Corporation: Research Funding. Odenike:Incyte Pharmaceuticals, Sanofi Aventis, Suneisis, Algeta, Spectrum Pharaceuticals: Honoraria. Roeth:Geron Corporation: Research Funding. Shih:Geron: Employment, Equity Ownership. Burington:Geron Corporation: Employment, Equity Ownership. Leibundgut:Geron Corporation: Research Funding.


Author(s):  
Christoph Driessen ◽  
Christoph Noppen ◽  
Georg Boonen ◽  
Juergen Drewe

Early treatment of polycythemia vera with ultra-low-dose interferon-α 2a is well tolerated and results in complete hematologic and major molecular remission and a strong reduction of all symptoms, especially pruritus and fatigue.


Blood ◽  
2014 ◽  
Vol 123 (10) ◽  
pp. 1552-1555 ◽  
Author(s):  
Giada Rotunno ◽  
Carmela Mannarelli ◽  
Paola Guglielmelli ◽  
Annalisa Pacilli ◽  
Alessandro Pancrazzi ◽  
...  

Key Points CALR mutations occur in half of JAK2 and MPL wt patients with ET and associate with some distinctive phenotypic traits. Patients with ET harboring CALR mutations are at significantly lower risk of thrombosis compared with JAK2- and MPL-mutated patients.


2015 ◽  
Vol 30 (7) ◽  
pp. 882 ◽  
Author(s):  
Bo Hyun Kim ◽  
Young-Uk Cho ◽  
Mi-Hyun Bae ◽  
Seongsoo Jang ◽  
Eul-Ju Seo ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1610-1610
Author(s):  
Yu-Cheng Chang ◽  
Ken-Hong Lim ◽  
Huan-Chau Lin ◽  
Yi-Hao Chiang ◽  
Ling Huang ◽  
...  

Abstract Introduction: Essential thrombocythemia (ET) is a BCL-ABL1-negative myeloproliferative neoplasm (MPN), and is characterized by increased number of mature megakaryocytes (MKs) in the bone marrow and sustained thrombocytosis in the peripheral blood. We have reported that activated B cells are increased in patients with essential thrombocythemia, and can facilitate platelet production mediated by cytokines, such as interleukin-1beta (IL-1β) and interleukin-6 (IL-6) regardless JAK2 V617F mutational status (Thromb Haemost. 2014, 112: 537). Recently, Calreticulin (CALR) mutations were discovered in JAK2/MPL-unmutated essential thrombocythemia (ET) and primary myelofibrosis. Although CALR mutations may be associated with activated JAK-STAT signaling pathway, its exact molecular pathogenesis remains elusive in MPN. Interestingly, in vitro study has shown that CALR is capable of driving B cells activation through the toll-like receptor 4 (TLR4) pathway (J Immunol.2010; 185: 4561). Here we sought to evaluate the association between CALR mutations and B cell immune profiles in ET patients. Methods: Fifty-four patients diagnosed with ET based on the 2008 WHO classification were enrolled into this study. CALR mutations were screened by high-resolution melting analysis and nucleotide sequencing. JAK2 V617F and MPL mutations were screened by allele-specific PCR and nucleotide sequencing, respectively. B cell populations, granulocytes/monocytes membrane-bound B cell-activating factor (mBAFF) and CALR levels, B cells TLR4 expression and intracellular levels of IL-1β/IL-6 and the expression of CD69, CD80, and CD86 were quantified by flow cytometry. Serum BAFF and plasma CALR concentrations were measured by ELISA. Forty-eight healthy adults and 17 patients with reactive thrombocytosis were used for comparison. The association between clinical, laboratory and molecular characteristics were studied. Statistical significance was defined as a two-sided p value <0.05 and SPSS version 22.0 (IBM, New York, USA) was used for all analyses. Results: In this series, 19 (35.2%) patients harbored 8 types of CALR exon 9 mutations including 4 (7.4%) patients with concomitant JAK2 V617F mutations. Compared to JAK2 V617F mutation, CALR mutations correlated with younger age at diagnosis (p=0.04), higher platelet count (p=0.004), lower hemoglobin level (p=0.013) and lower leukocyte count (p=0.013). Among all ET patients, CALR mutations correlated with significantly lower serum BAFF level (median 1.6 ng/mL, p =0.049) and higher fraction of B cells with TLR4 expression (median 11.3%, p=0.021). Compared to healthy adults, patients with ET had statistically significant higher serum BAFF concentrations and higher mBAFF levels on both granulocytes and monocytes, and higher fraction of B cells with TLR4 expression and higher fractions of B cells with intracellular IL-1β and IL-6 expression irrespective of their genotypes. ET patients with both JAK2 and CALR mutations had statistically higher number of CD69-positive and CD86-positive activated B cells when compared with healthy adults. Among the three mutational groups of ET patients, there were no significant differences in granulocytes/monocytes mBAFF, in the fraction of B cells with intracellular IL-1β or IL-6 expression, and the numbers of CD80-positive and CD86-positive activated B cells. Granulocyte membrane-bound CALR levels were highest in patients with reactive thrombocytosis. Plasma CALR concentrations were highest in patients with reactive thrombocytosis (mean +/- SE: 9.04 +/- 0.59) and lowest in CALR -mutated ET patients (5.35 +/- 0.90, p <0.001). Conclusions: Activation of B cells is universally present in ET. Both granulocyte membrane-bound CALR levels and plasma CALR concentrations were lower in CALR-mutated ET patients suggesting that CALR may not play a major role in the activation of B cells in these patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3623-3623
Author(s):  
Lierni Fernández-Ibarrondo ◽  
Joan Gibert ◽  
Concepción Fernández-Rodríguez ◽  
Laura Camacho ◽  
Anna Angona ◽  
...  

Abstract Introduction : Hydroxyurea (HU) is the most widely used cytoreductive treatment for patients with essential thrombocythemia (ET) and polycythemia vera (PV) at high risk of thrombosis. It remains unknown whether long-term HU therapy modulates or promotes the acquisition of mutations in non-driver (ND) genes, especially, when assessing hematological (HR) and molecular (MR) response. The objective of the study was to analyze the clonal dynamics of ND genes in HR and MR with HU in a cohort of JAK2V617F-mutated PV and ET patients. Method s: The study included 144 JAK2V617F positive patients (PV n = 73, TE n = 71) receiving HU as first-line cytoreductive treatment. The baseline sample (before HU treatment) and at the timepoint of best molecular response to JAK2V617F were analyzed. The allelic burden of J AK2V617F was assessed by allele-specific PCR and the mutational profile of ND genes was analyzed by next generation sequencing with a custom panel including 27 myeloid-associated genes. HR was defined according to the criteria of the European LeukemiaNet 2009 and MR of JAK2V617F was defined as complete, major, partial and no response (Table I). Results : Median molecular follow-up was 54.1 months for PV and 55.5 months for ET. Patients with PV were more likely to be males (p&lt;0.001), and displayed higher leukocyte count (p&lt;0.001) compared to those with ET. The respective numbers of deaths, leukemic transformations and fibrotic progressions were: 22 (30%), 4 (5%), 6 (8%) for PV cases, and 19 (27%), 1 (1%), 0 (0%) for ET patients. At baseline, a total of 62 somatic mutations in ND genes were detected in 42/73 (57%) PV patients while 58 were detected in 36/71 (51%) ET patients. Complete HR was observed in 102 patients: 44 (60%) PV and 58 (81%) ET. Partial MR in 67 cases: 35 (48%) PV and 32 (45%) ET and major or complete MR in 21 cases: 8 (11%) PV and 13 (18%) ET. The median duration of HU treatment was 45.8 months (range: 17.5-189.5) for PV and 45.6 months (range: 14.6-168.6) for ET. The most frequently mutated genes detected at pre-therapy samples were TET2 (34%), ASXL1 (12%), SF3B1 (7%) and EZH2 (5%) in PV patients, and TET2 (34%), ASXL1 (13%), DNMT3A (13 %) and SRSF2 (5%) in ET patients. No significant differences were observed in the MR (p=0.358) or HR (p=0.917) according to the presence or absence of mutations in ND genes at baseline. Clonal dynamics of DNMT3A, ASXL1, and TET2 (DAT) genes were not modulated by HU therapy to the same extent as JAK2V617F. Disappearance and emergence of additional mutations in DAT genes were observed independently of the molecular response achieved by the JAK2V617F clone. These findings suggest the existence of clones with mutations in ND genes independent from the pathogenic driver clone, and the lack of modulation by HU treatment. Finally, an increase of allelic burden or the appearance of mutations in TP53, a gene related to progression, and in other DNA repair genes (PPM1D and CHEK2) was observed in 14 (19.1%) PV patients and 9 (12.6%) ET cases during HU treatment. However, no increased risk of myelofibrotic transformation or progression to acute myeloid leukemia was observed in these patients. Conclusion s: Pre-treatment ND mutations are not associated with HR and MR to HU in JAK2V617F-mutated patients. 2. The clonal dynamics of ND mutations (decrease, increase, appearance, disappearance) are not related to the evolutionary dynamics of JAK2V617F. 3. An increase or appearance of progression-related mutations in TP53 and/or other genes of the DNA repair pathway such as CHEK2 and PPM1D is observed during HU treatment. Acknowledgments : Instituto de Salud Carlos III-FEDER, PI16/0153, PI19/0005, 2017SGR205, PT20/00023 and XBTC. Figure 1 Figure 1. Disclosures Salar: Janssen: Consultancy, Speakers Bureau; Roche: Consultancy, Speakers Bureau; Gilead: Research Funding; Celgene: Consultancy, Speakers Bureau. Besses: Gilead: Research Funding. Bellosillo: Thermofisher Scientific: Consultancy, Speakers Bureau; Qiagen: Consultancy, Speakers Bureau; Roche: Research Funding, Speakers Bureau.


Blood ◽  
2014 ◽  
Vol 124 (13) ◽  
pp. 2091-2093 ◽  
Author(s):  
Christopher Allen ◽  
Jonathan R. Lambert ◽  
David C. Linch ◽  
Rosemary E. Gale

Key Points In ET, a CALR mutation correlates with a monoclonal X chromosome inactivation pattern, which differs from JAK2V617F mutant disease. The presence of a CALR mutant is associated with suppression of wild-type myelopoiesis.


Blood ◽  
2017 ◽  
Vol 129 (9) ◽  
pp. 1166-1176 ◽  
Author(s):  
Amy Hughes ◽  
Jade Clarson ◽  
Carine Tang ◽  
Ljiljana Vidovic ◽  
Deborah L. White ◽  
...  

Key Points Increased immune suppressors and PD-1 abrogates effector responses in CML patients at diagnosis. Enhanced net effector immune responses and decreased PD-1 and immune suppressors may promote sustained deep molecular response in CML.


Sign in / Sign up

Export Citation Format

Share Document