inactivation pattern
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 8)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Aekkachai Tuekprakhon ◽  
Aulia Rahmi Pawestri ◽  
Ragkit Suvannaboon ◽  
Ketwarin Thongyou ◽  
Adisak Trinavarat ◽  
...  

X-linked retinitis pigmentosa (XLRP), a rare form of retinitis pigmentosa (RP), is predominantly caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. Affected males often present with severe phenotypes and early disease onset. In contrast, female carriers are usually asymptomatic or show stationary phenotypes. Herein, we reported an 8-year-old female carrier, a daughter of a confirmed RP father with RPGR mutation, with an early onset of progressive cone-rod pattern retinal dystrophy. Additionally, the carrier experienced visual snow-like symptom as long as she recalled. Ophthalmological examination showed the reduction of visual acuity and attenuation of photoreceptor functions since the age of 5 years. Further analysis revealed a heterozygous pathogenic variant of the RPGR gene and a random X-inactivation pattern. Although she harboured an identical RPGR variant as the father, there were phenotypic intrafamilial variations. The information on the variety of genotypic and phenotypic presentations in XLRP carriers is essential for further diagnosis, management, and monitoring of these cases, including the design of future gene therapy trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luciane Simonetti ◽  
Lucas G. A. Ferreira ◽  
Angela Cristina Vidi ◽  
Janaina Sena de Souza ◽  
Ilda S. Kunii ◽  
...  

Klinefelter syndrome (KS) displays a broad dysmorphological, endocrinological, and neuropsychological clinical spectrum. We hypothesized that the neurocognitive dysfunction present in KS relies on an imbalance in X-chromosome gene expression. Thus, the X-chromosome inactivation (XCI) pattern and neurocognitive X-linked gene expression were tested and correlated with intelligence quotient (IQ) scores. We evaluated 11 KS patients by (a) IQ assessment, (b) analyzing the XCI patterns using both HUMARA and ZDHHC15 gene assays, and (c) blood RT-qPCR to investigate seven X-linked genes related to neurocognitive development (GTPBP6, EIF2S3, ITM2A, HUWE1, KDM5C, GDI1, and VAMP7) and XIST in comparison with 14 (male and female) controls. Considering IQ 80 as the standard minimum reference, we verified that the variability in IQ scores in KS patients seemed to be associated with the XCI pattern. Seven individuals in the KS group presented a random X-inactivation (RXI) and lower average IQ than the four individuals who presented a skewed X-inactivation (SXI) pattern. The evaluation of gene expression showed higher GTPBP6 expression in KS patients with RXI than in controls (p = 0.0059). Interestingly, the expression of GTPBP6 in KS patients with SXI did not differ from that observed in controls. Therefore, our data suggest for the first time that GTPBP6 expression is negatively associated with full-scale IQ under the regulation of the type of XCI pattern. The SXI pattern may regulate GTPBP6 expression, thereby dampening the impairment in cognitive performance and playing a role in intelligence variability in individuals with KS, which warrants further mechanistic investigations.


2020 ◽  
Vol 160 (2) ◽  
pp. 80-84
Author(s):  
Claudia Ciaccio ◽  
Serena Redaelli ◽  
Angela Bentivegna ◽  
Susan Marelli ◽  
Francesca Crosti ◽  
...  

Unbalanced X;autosome translocations are a rare occurrence with a wide variability in clinical presentation in which the X chromosome unbalance is usually mitigated by a favorable X inactivation pattern. In most cases, this compensation mechanism is incomplete, and the patients show a syndromic clinical presentation. We report the case of a family with 4 women, of 3 different generations, carrying an unbalanced X;7 translocation with a derivative X;7 chromosome and showing a skewed X inactivation pattern with a preferential activation of the normal X. None of the carriers show intellectual disability, and all of them have a very mild clinical presentation mainly characterized by gynecological/hormonal issues and autoimmune disorders. We underline the necessity of family testing for a correct genetic consultation, especially in the field of prenatal diagnosis. We indeed discuss the fact that X;autosome translocations may lead to self-immunization, as skewed X chromosome inactivation has already been proved to be related to autoimmune disorders.


Author(s):  
Maria Bernarda Pitzianti ◽  
Angelo Santamaria Palombo ◽  
Susanna Esposito ◽  
Augusto Pasini

Rett syndrome (RTT) is a neurodevelopmental disorder with a genetic basis that is associated with the mutation of the X-linked methyl-CpG binding protein 2 (MECP2) gene in approximately 90% of patients. RTT is characterized by a brief period of normal development followed by loss of acquired skills and evolution towards impairment of brain and motor functions and multi-organ dysfunction. Originally, RTT was considered lethal in males as it has an X-linked dominant inheritance. However, although this syndrome has a higher incidence in females, rare cases are also documented in males. Here, we describe the case of an 11-year-old male patient with a microduplication MECP2 Xq28. Our patient is currently living, while his older brother with the same mutation died at the age of 9 years. We showed that the role of MECP2 as an epigenetic modulator and the X-chromosome inactivation pattern can explain the lethal clinical form of the older brother with the same microduplication MECP2 Xq28 presented by our patient who is still alive. Given the limited case history of RTT in males, further studies are needed to better characterize this syndrome in males and consequently improve the currently available therapeutic strategies.


2019 ◽  
Vol 39 (8) ◽  
pp. 603-608 ◽  
Author(s):  
Wen‐Bin He ◽  
Juan Du ◽  
Ping‐Yuan Xie ◽  
Shuang Zhou ◽  
Ya‐Xin Zhang ◽  
...  

2018 ◽  
Vol 50 (01) ◽  
pp. 061-063
Author(s):  
Anastasios Mitrakos ◽  
Christalena Sofokleous ◽  
George Papadimas ◽  
Helena Fryssira ◽  
Sofia Kitsiou-Tzeli ◽  
...  

AbstractX-linked myotubular myopathy (XLMTM) is a rare inherited neuromuscular disorder associated with mutations in the MTM1 gene on the Xq28 region. We report a severely affected girl with XLMTM, caused by maternally inherited 661 kb Xq28 microduplication identified by chromosomal microarray analysis and confirmed also on DNA from muscle biopsy with a custom-designed X-chromosome-specific microarray. X-inactivation analysis revealed a skewed inactivation pattern on the proband's muscle biopsy. Muscle biopsy histopathology was indicative of increased variability in fiber diameter, marked and diffuse endomysial proliferation of adipose and connective tissues, as well as predominance of type 1 fibers.


Gene ◽  
2018 ◽  
Vol 666 ◽  
pp. 58-63 ◽  
Author(s):  
Cristiane Jeyce Gomes-Lima ◽  
Andressa Aby Faraj Linhares Maciel ◽  
Matheus de Oliveira Andrade ◽  
Vinicius Santos da Cunha ◽  
Juliana Forte Mazzeu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document