scholarly journals Murine pre–B-cell ALL induces T-cell dysfunction not fully reversed by introduction of a chimeric antigen receptor

Blood ◽  
2018 ◽  
Vol 132 (18) ◽  
pp. 1899-1910 ◽  
Author(s):  
Haiying Qin ◽  
Kazusa Ishii ◽  
Sang Nguyen ◽  
Paul P. Su ◽  
Chad R. Burk ◽  
...  

Key Points Pre–B-cell ALL induces T-cell dysfunction in vivo, mediated in part by a non–T-cell receptor–linked mechanism. Prior exposure of T cells to pre–B-cell ALL in vivo impairs subsequent functionality of CAR-expressing T cells.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A115-A115
Author(s):  
Anthony Battram ◽  
Mireia Bachiller ◽  
Álvaro Urbano-Ispizua ◽  
Beatriz Martin-Antonio

BackgroundChimeric antigen receptor-T (CAR-T) cells that target B cell maturation antigen (BCMA-CARs) have emerged as a promising treatment for multiple myeloma (MM). Despite impressive initial responses to BCMA-CAR therapy in clinical trials, relapse is common, signifying a need to improve the in vivo efficacy and persistence of BCMA-CARs.1 The development of unfavourable differentiation or T cell dysfunction, such as exhaustion and senescence, during the ex vivo expansion of the BCMA-CARs could be limiting their therapeutic potential. For CD19-directed CARs, reduced dysfunction and differentiation and improved anti-tumour responses were achieved by expanding the cells with IL-15 instead of IL-2.2 Therefore, in this study, our aim was to determine whether expanding BCMA-CARs with IL-15 or IL-15/IL-7 instead of IL-2 alters their levels of exhaustion, senescence, differentiation and activity.MethodsT cells stimulated with anti-CD3/anti-CD28-coated beads were supplemented with IL-2, IL-15, IL-15 + IL-7 or no cytokine and transduced with ARI2h, a BCMA-CAR with a 4-1BB co-stimulatory domain produced at our institution.3 Expanded BCMA-CARs were analysed by flow cytometry for markers of T cell dysfunction, or challenged with MM cell line ARP-1 and then tested for cytokine production, cytotoxic ability and activation signals.ResultsBCMA-CARs cultured in IL-15 or IL-15/IL-7 expanded similarly to those grown in IL-2, with comparable CAR transduction efficiencies, CD4:CD8 ratios and proliferation rates. BCMA-CARs grown in IL-15 had low expression of exhaustion marker LAG-3 and high expression of the costimulatory molecule CD27, which is important for T cell survival and persistence, when compared to BCMA-CARs cultured in IL-2. Moreover, BCMA-CARs grown solely in IL-15 were less differentiated than those supplemented with IL-7, and had higher expression of stem cell memory marker CXCR3 within the naïve population than those expanded with IL-2. When challenged with MM cell line ARP-1, IL-15-grown BCMA-CARs upregulated activation marker CD69, exhibited strong cytotoxicity and robust production of IFNγ and IL-2. However, in comparison to BCMA-CARs expanded in IL-2 or IL-15/IL-7, those grown with IL-15 had lower mTORC1 activity and p38 MAPK phosphorylation when activated by ARP-1 cells, suggesting differential regulation of key pathways for T cell metabolism and senescence, respectively.ConclusionsTo summarise, BCMA-CARs expanded with IL-15 alone exhibited the most favourable phenotype for therapeutic use compared those grown with IL-2 or IL-15/IL-7. Future experiments using murine MM models will be critical in understanding the in vivo benefits or drawbacks of culturing BCMA-CARs in IL-15 compared to IL-2 or IL-15/IL-7.Ethics ApprovalResearch involving human material was approved by the Ethical Committee of Clinical Research (Hospital Clinic, Barcelona). Peripheral blood T cells were obtained from healthy donors after informed consent in accordance with the Declaration of Helsinki.ReferencesRoex G, Feys T, Beguin Y, Kerre T, Poiré X, Lewalle P, et al. Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics [Internet]. 2020;12:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32102267Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo CF, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res 2019;7:759–72.Perez-Amill L, Suñe G, Antoñana-Vildosola A, Castella M, Najjar A, Bonet J, et al. Preclinical development of a humanized chimeric antigen receptor against B cell maturation antigen for multiple myeloma. Haematologica [Internet]. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/31919085


2018 ◽  
Vol 2 (5) ◽  
pp. 517-528 ◽  
Author(s):  
Takahiro Kamiya ◽  
Desmond Wong ◽  
Yi Tian Png ◽  
Dario Campana

Key Points Newly designed PEBLs prevent surface expression of T-cell receptor in T cells without affecting their function. Combined with chimeric antigen receptors, PEBLs can rapidly generate powerful antileukemic T cells without alloreactivity.


Blood ◽  
2017 ◽  
Vol 130 (25) ◽  
pp. 2739-2749 ◽  
Author(s):  
Christopher D. Nishimura ◽  
Daniel A. Brenner ◽  
Malini Mukherjee ◽  
Rachel A. Hirsch ◽  
Leah Ott ◽  
...  

Key Points c-MPL enables tumor-directed TCR+ T cells to become sequential killers by improving immune synapses, costimulation, and cytokine signals. c-MPL activation improves in vivo persistence and antitumor function of adoptively transferred c-MPL+ TCR-transgenic T cells.


1994 ◽  
Vol 14 (2) ◽  
pp. 1095-1103
Author(s):  
A L Burkhardt ◽  
T Costa ◽  
Z Misulovin ◽  
B Stealy ◽  
J B Bolen ◽  
...  

Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.


2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5560-5570 ◽  
Author(s):  
Karla R. Wiehagen ◽  
Evann Corbo ◽  
Michelle Schmidt ◽  
Haina Shin ◽  
E. John Wherry ◽  
...  

Abstract The requirements for tonic T-cell receptor (TCR) signaling in CD8+ memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain–containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV). SLP-76–dependent signals are required during the contraction phase of the immune response for the normal generation of CD8 memory precursor cells. Conversely, LCMV-specific memory CD8 T cells generated in the presence of SLP-76 and then acutely deprived of TCR-mediated signals persist in vivo in normal numbers for more than 40 weeks. Tonic TCR signals are not required for the transition of the memory pool toward a central memory phenotype, but the absence of SLP-76 during memory homeostasis substantially alters the kinetics. Our data are consistent with a model in which tonic TCR signals are required at multiple stages of differentiation, but are dispensable for memory CD8 T-cell persistence.


1995 ◽  
Vol 105 (s1) ◽  
pp. 58S-61S ◽  
Author(s):  
Christopher L. Reardon ◽  
Kent Heyborne ◽  
Moriya Tsuji ◽  
Fidel Zavala ◽  
Robert E. Tigelaar ◽  
...  

Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Reza Nejati ◽  
Lauren Shaw ◽  
...  

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) β chain in human α/β TCRs are grouped into Vβ families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vβ families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vβ families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vβ family in vitro and in vivo. These findings provide proof of concept that TCR Vβ-family-specific T cell lysis can be achieved using this novel combination cell–antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.


Sign in / Sign up

Export Citation Format

Share Document