scholarly journals A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site

Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 852-856 ◽  
Author(s):  
Gabriella E. Martyn ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
Kate G. R. Quinlan ◽  
...  

Abstract β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, result from mutations in the adult β-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of β-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The −113A>G HPFH mutation falls within the −115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the −113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the −113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the −113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.

1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322 ◽  
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817 ◽  
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

Abstract A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 492-492
Author(s):  
Kenneth R Peterson ◽  
Halyna Fedosyuk ◽  
Flavia C Costa

Abstract Hereditary persistence of fetal hemoglobin (HPFH) is a result of mutations that prevent the silencing of the g-globin genes during the adult stage of definitive erythropoiesis. Two types of HPFH are recognized, deletional HPFH and non-deletional HPFH. Mutations in the later class have been identified in the proximal promoters of the Ag- and Gg-globin genes. Individuals homozygous for sickle cell disease or certain b-thalassemia mutations, that have in addition a HPFH mutation, do not suffer the deleterious effects of these diseases. These subjects provide the natural evidence supporting the clinical effort to reactivate fetal hemoglobin as the major treatment for SCD and b-thalassemias. Thus, understanding the molecular mechanisms regulating the g-globin genes is essential for identification of points of therapeutic intervention. Although the number of point mutations causing HPFH has grown over the years, the biochemical mechanisms affected by these alterations remains elusive. In addition, it is unlikely that all potential mutations have been identified in humans. A complete catalog of all potential HPFH point mutations, coupled with knowledge of the transcriptional processes affected by them will be an invaluable step towards effectively treating these diseases. We recently identified a novel T>A HPFH mutation in a GATA site at position -566 of the Ag-globin promoter, the most distal in the promoter to date, that affects binding of a GATA-1-FOG-1-Mi2 repressor complex. Since this study utilized mutated human b-globin locus yeast artificial chromosome (b-YAC) transgenic mice, where a second copy of the Ag-globin gene was introduced near the locus control region, we produced b-YAC transgenic mice containing the -566 mutation at the normally located Ag-globin gene. These mice display a mild HPFH phenotype, an approximately 3% increase in g-globin gene expression, compared to wild-type b-YAC mice. Chromatin immunoprecipitation (ChIP) studies demonstrated that this mutation prevents GATA-1 binding when g-globin is repressed in post-conception day 18 (E18) fetal liver, whereas recruitment was observed in wild-type b-YAC transgenic samples from the same developmental stage. These data are consistent with the presence of a GATA-1-mediated repressor complex at this GATA site when g-globin is not expressed. GATA-1-mediated repression may be a general mechanism of g-globin silencing. To begin testing this hypothesis, we utilized previously generated Ag-globin -117 G>A Greek HPFH b-YAC transgenic mice, which show a 5–8% increase in g-globin synthesis in adult erythropoiesis. Published data suggested that this mutation affects nearby GATA-1 binding. Our ChIP data confirmed these results, however the GATA-1 multi-protein complex that is affected may differ from that recruited to the -566 GATA binding site. Finally, we have developed a cell-based selection that is being used to identify a comprehensive set of Ag-globin HPFH promoter mutations. Chemical inducer of dimerization (CID)-dependent Ag-globin promoter-eGFP b-YAC bone marrow cells were derived from transgenic mice and mutagenized with N-ethyl, N-nitrosourea (ENU). These cells are normally GFP−; treatment with g-globin-inducers or the presence of the -117 Greek HPFH mutation results in GFP+ cells. GFP+ cells were collected by FACS and individual cell clones expanded so that genomic DNA could be isolated. Promoter proximal regions were amplified by four PCR primer sets and subjected to heteroduplex analysis with the corresponding wild-type Ag-globin promoter PCR products as the control amplicons. Twenty three heteroduplexes have been detected among 158 mutant clones screened. Most are clustered in the proximal promoter. These data suggest that we have produced HPFH mutations, likely consisting of those known in human populations, as well as novel sites that affect repressor binding or enhance recruitment of transcriptional activators.


2020 ◽  
Vol 9 (11) ◽  
pp. 3782
Author(s):  
Martin H. Steinberg

Fetal hemoglobin (HbF) usually consists of 4 to 10% of total hemoglobin in adults of African descent with sickle cell anemia. Rarely, their HbF levels reach more than 30%. High HbF levels are sometimes a result of β-globin gene deletions or point mutations in the promoters of the HbF genes. Collectively, the phenotype caused by these mutations is called hereditary persistence of fetal hemoglobin, or HPFH. The pancellularity of HbF associated with these mutations inhibits sickle hemoglobin polymerization in most sickle erythrocytes so that these patients usually have inconsequential hemolysis and few, if any, vasoocclusive complications. Unusually high HbF can also be associated with variants of the major repressors of the HbF genes, BCL11A and MYB. Perhaps most often, we lack an explanation for very high HbF levels in sickle cell anemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2066-2066 ◽  
Author(s):  
Fernanda Marconi Roversi ◽  
Anderson Ferreira Cunha ◽  
Carolina Lanaro ◽  
Ana Flavia Brugnerotto ◽  
Maria Emília Favero ◽  
...  

Abstract Abstract 2066 Hereditary persistence of fetal hemoglobin (HPFH) is a condition that prevents hemoglobin switching and the consequent silencing of the gamma globin genes, resulting in continued hemoglobin (Hb) F synthesis in adults. Two types of HPFH are responsible for this phenotype: deletional HPFH – deletions in the end of the beta globin locus – and non-deletional HPFH (ndHPFH) – single point mutations in the proximal promoter of both gamma globin genes. Sickle cell anemia patients or beta-thalassemia patients that present HPFH show high levels of HbF that are associated with less severe clinical course in these diseases. The development of new therapies based on the reactivation of gamma globin expression may be important for the treatment of these patients. The Brazilian ndHPFH type is characterized as a C→G substitution in the A gamma globin promoter at position –195 and the molecular mechanism responsible for the reactivation of this gene in the Brazilian ndHPFH type remains unclear. In contrast to the British ndHPFH type (-198), where the mechanism responsible for the increase of HbF levels is mediated by the raising in the affinity for the Sp1 transcription factor (TF), the Brazilian ndHPFH mutation does not affect Sp1 binding. Thus, other TF may be involved in the reactivation of the A gamma globin gene in the Brazilian ndHPFH type. The aim of this study was to investigate the mechanism involved in the reactivation or repression of the A gamma globin gene in the Brazilian ndHPFH type and identify possible TF responsible for this phenotype. In vitro primary human erythroblast cultures, derived from human CD34+ hematopoietic cells from 4 Brazilian ndHPFH type subjects and 4 control subjects, were proliferated and differentiated into late stage erythroblasts. The nuclear extracts from predominantly basophilic and polychromatic erythroblasts were used to profile TF activity using Protein-DNA Array method. The analysis of the array densitometry identified a number of TF whose DNA binding activities were either enhanced or repressed in the Brazilian ndHPFH cultures. Among the TF analyzed, the NF-E1/YY1 and the PAX-1 were selected for this study. Since this assay requires a secondary method to confirm these results, nuclear extracts were used to conduct chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). ChIP was carried out using antibodies against NF-E1/YY1 and PAX-1 to quantify the binding to these TF to the –195 A gamma globin promoter region. EMSA was performed using probes with the same sequence spotted on the array membrane to analyze the activity of NF-E1/YY1 and PAX-1. Both methods confirmed and validated the previous array results. NF-E1/YY1 is a transcription factor that represses embryonic (epsilon) and fetal (gamma) globin genes. Protein-DNA array and EMSA showed a decreased binding of NF-E1/YY1 in Brazilian ndHPFH nuclear extracts and ChIP analysis revealed diminished NF-E1/YY1 occupancy at the –195 A gamma globin promoter region of Brazilian ndHPFH. The consensus binding site for NF-E1/YY1 is a CCAN motif that is observed between the –195 and –192 position in the A gamma globin promoter region. The C→G substitution at –195 position may disrupt this DNA binding site, cause decreased NF-E1/YY1 interaction and probably allows the binding of PAX-1, a transcriptional activator with a paired box DNA-binding domain that has as a DNA binding core motif, the sequence TTCCGC. This sequence, located between the –199 and –194 position in the A gamma globin promoter, is only presente in the Brazilian type of ndHPFH. Our protein-DNA array and EMSA results showed an increased binding of PAX-1 in the Brazilian ndHPFH nuclear extracts and quantitative ChIP analysis with anti-PAX-1 antibody showed that PAX-1 binds to the –195 A gamma globin promoter region only in the presence of this C→G substitution. These results suggest that the –195 site (C→G) in the A gamma globin promoter region may decrease NF-E1/YY1 binding and increase PAX-1 binding in this DNA region, probably resulting in the reactivation of the A gamma globin gene. The increase in the HbF levels in the Brazilian ndHPFH occurs differently from the British ndHPFH type and represents a novel mechanism of A gamma globin reactivation. Such findings may lead to the development of future therapeutic strategies for HbF induction in the treatment of other hemoglobinopathies. Support by FAPESP and CNPq. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1853-1863 ◽  
Author(s):  
DL Gumucio ◽  
KL Rood ◽  
KL Blanchard-McQuate ◽  
TA Gray ◽  
A Saulino ◽  
...  

Abstract We have analyzed the binding of Sp1, a ubiquitously expressed transactivator, to the promoter region of the gamma genes. Low-affinity Sp1 sites were found at -50 and -200. A high-affinity site was detected at -140, over the CACCC sequence. To analyze the function of these sites, Drosophila SL-2 cells, which lack Sp1, were cotransfected with an Sp1 expression plasmid and gamma globin promoter-CAT constructs. In these assays, the gamma promoter was significantly stronger in the presence than in the absence of Sp1. Thus, the three Sp1 sites in the gamma promoter allow binding as well as transactivation of the promoter. The majority of this transactivation was due to the strong binding site at -140 because introduction of a point mutation at -144 (CACCC----AACCC) reduced Sp1-dependent promoter strength by 57%. Analysis of the -200 region suggested that in the wild-type promoter, Sp1 binding at this site contributes little to promoter strength. However, a point mutation (-198 T----C) associated with hereditary persistence of fetal hemoglobin (HPFH) dramatically increased the affinity of this site for Sp1 and significantly increased Sp1 dependent promoter strength in SL-2 cells. Three other point mutations associated with HPFH did not significantly affect the interaction of Sp1 with the - 200 region.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2075-2083 ◽  
Author(s):  
Patricia G. McCaffrey ◽  
David A. Newsome ◽  
Eitan Fibach ◽  
Minoru Yoshida ◽  
Michael S.-S. Su

Abstract The short-chain fatty acid butyrate has been shown to elevate fetal hemoglobin (HbF ) by inducing expression of the γ-globin gene. Regulation of gene expression by butyrate is thought to proceed via inhibition of the enzyme histone deacetylase, leading to elevated levels of core histone acetylation which affect chromatin structure and transcription rates. To determine whether changes in histone acetylation are critical for the regulation of the γ-globin gene, we tested three potent and specific inhibitors of histone deacetylase, the cyclic tetrapeptides trapoxin and Helminthsporium carbonum toxin (HC toxin), and the antifungal antibiotic trichostatin A for their ability to induce fetal hemoglobin expression in erythroid cells. These compounds induced fetal hemoglobin in both primary erythroid cell cultures and human erythroleukemia (K562) cells. A butyrate-responsive element spanning the duplicated CCAAT box region of the γ-globin promoter has been identified in transient transfection assays using a reporter construct in K562 cells, and we show that the same promoter region is required for response to trapoxin and trichostatin. Mutational analysis of the γ-globin promoter indicates that the distal CCAAT box and 3′ flanking sequence (CCAATAGCC) is critical for activation by butyrate, trapoxin, and trichostatin, whereas the proximal element (CCAATAGTC) plays a less important role. These results show that inhibition of histone deacetylase can lead to transcriptional activation of γ-globin promoter reporter gene constructs through proximal promoter elements, and suggest that butyrate induces γ-globin expression via such changes in histone acetylation.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1853-1863 ◽  
Author(s):  
DL Gumucio ◽  
KL Rood ◽  
KL Blanchard-McQuate ◽  
TA Gray ◽  
A Saulino ◽  
...  

We have analyzed the binding of Sp1, a ubiquitously expressed transactivator, to the promoter region of the gamma genes. Low-affinity Sp1 sites were found at -50 and -200. A high-affinity site was detected at -140, over the CACCC sequence. To analyze the function of these sites, Drosophila SL-2 cells, which lack Sp1, were cotransfected with an Sp1 expression plasmid and gamma globin promoter-CAT constructs. In these assays, the gamma promoter was significantly stronger in the presence than in the absence of Sp1. Thus, the three Sp1 sites in the gamma promoter allow binding as well as transactivation of the promoter. The majority of this transactivation was due to the strong binding site at -140 because introduction of a point mutation at -144 (CACCC----AACCC) reduced Sp1-dependent promoter strength by 57%. Analysis of the -200 region suggested that in the wild-type promoter, Sp1 binding at this site contributes little to promoter strength. However, a point mutation (-198 T----C) associated with hereditary persistence of fetal hemoglobin (HPFH) dramatically increased the affinity of this site for Sp1 and significantly increased Sp1 dependent promoter strength in SL-2 cells. Three other point mutations associated with HPFH did not significantly affect the interaction of Sp1 with the - 200 region.


Sign in / Sign up

Export Citation Format

Share Document