scholarly journals Induction of γ-Globin by Histone Deacetylase Inhibitors

Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 2075-2083 ◽  
Author(s):  
Patricia G. McCaffrey ◽  
David A. Newsome ◽  
Eitan Fibach ◽  
Minoru Yoshida ◽  
Michael S.-S. Su

Abstract The short-chain fatty acid butyrate has been shown to elevate fetal hemoglobin (HbF ) by inducing expression of the γ-globin gene. Regulation of gene expression by butyrate is thought to proceed via inhibition of the enzyme histone deacetylase, leading to elevated levels of core histone acetylation which affect chromatin structure and transcription rates. To determine whether changes in histone acetylation are critical for the regulation of the γ-globin gene, we tested three potent and specific inhibitors of histone deacetylase, the cyclic tetrapeptides trapoxin and Helminthsporium carbonum toxin (HC toxin), and the antifungal antibiotic trichostatin A for their ability to induce fetal hemoglobin expression in erythroid cells. These compounds induced fetal hemoglobin in both primary erythroid cell cultures and human erythroleukemia (K562) cells. A butyrate-responsive element spanning the duplicated CCAAT box region of the γ-globin promoter has been identified in transient transfection assays using a reporter construct in K562 cells, and we show that the same promoter region is required for response to trapoxin and trichostatin. Mutational analysis of the γ-globin promoter indicates that the distal CCAAT box and 3′ flanking sequence (CCAATAGCC) is critical for activation by butyrate, trapoxin, and trichostatin, whereas the proximal element (CCAATAGTC) plays a less important role. These results show that inhibition of histone deacetylase can lead to transcriptional activation of γ-globin promoter reporter gene constructs through proximal promoter elements, and suggest that butyrate induces γ-globin expression via such changes in histone acetylation.

Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Abstract Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


2001 ◽  
Vol 21 (9) ◽  
pp. 3118-3125 ◽  
Author(s):  
Xiaoyong Chen ◽  
James J. Bieker

ABSTRACT The erythroid cell-specific transcription factor erythroid Krüppel-like factor (EKLF) is an important activator of β-globin gene expression. It achieves this by binding to the CACCC element at the β-globin promoter via its zinc finger domain. The coactivators CBP and P300 interact with, acetylate, and enhance its activity, helping to explain its role as a transcription activator. Here we show that EKLF can also interact with the corepressors mSin3A and HDAC1 (histone deacetylase 1) through its zinc finger domain. When linked to a GAL4 DNA binding domain, full-length EKLF or its zinc finger domain alone can repress transcription in vivo. This repressive activity can be relieved by the HDAC inhibitor trichostatin A. Although recruitment of EKLF to a promoter is required to show repression, its zinc finger domain cannot bind directly to DNA and repress transcription simultaneously. In addition, the target promoter configuration is important for enabling EKLF to exhibit any repressive activity. These results suggest that EKLF may function in vivo as a transcription repressor and play a previously unsuspected additional role in regulating erythroid gene expression and differentiation.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3555-3561 ◽  
Author(s):  
Marco Gabbianelli ◽  
Ugo Testa ◽  
Adriana Massa ◽  
Elvira Pelosi ◽  
Nadia Maria Sposi ◽  
...  

Abstract Mechanisms underlying fetal hemoglobin (HbF) reactivation in adult life have not been elucidated; particularly, the role of growth factors (GFs) is controversial. Interestingly, histone deacetylase (HD) inhibitors (sodium butyrate, NaB, trichostatin A, TSA) reactivate HbF. We developed a novel model system to investigate HbF reactivation: (1) single hematopoietic progenitor cells (HPCs) were seeded in serum-free unilineage erythroid culture; (2) the 4 daughter cells (erythroid burst-forming units, [BFU-Es]), endowed with equivalent proliferation/differentiation and HbF synthesis potential, were seeded in 4 unicellular erythroid cultures differentially treated with graded dosages of GFs and/or HD inhibitors; and (3) HbF levels were evaluated in terminal erythroblasts by assay of F cells and γ-globin content (control levels, 2.4% and 1.8%, respectively, were close to physiologic values). HbF was moderately enhanced by interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor treatment (up to 5%-8% γ-globin content), while sharply reactivated in a dose-dependent fashion by c-kit ligand (KL) and NaB (20%-23%). The stimulatory effects of KL on HbF production and erythroid cell proliferation were strictly correlated. A striking increase of HbF was induced by combined addition of KL and NaB or TSA (40%-43%). This positive interaction is seemingly mediated via different mechanisms: NaB and TSA may modify the chromatin structure of the β-globin gene cluster; KL may activate the γ-globin promoter via up-modulation of tal-1 and possibly FLKF transcription factors. These studies indicate that KL plays a key role in HbF reactivation in adult life. Furthermore, combined KL and NaB administration may be considered for sickle cell anemia and β-thalassemia therapy.


Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 852-856 ◽  
Author(s):  
Gabriella E. Martyn ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
Kate G. R. Quinlan ◽  
...  

Abstract β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, result from mutations in the adult β-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of β-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The −113A>G HPFH mutation falls within the −115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the −113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the −113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the −113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


1993 ◽  
Vol 13 (4) ◽  
pp. 2298-2308
Author(s):  
Q Zhang ◽  
P M Reddy ◽  
C Y Yu ◽  
C Bastiani ◽  
D Higgs ◽  
...  

We studied the functional interaction between human embryonic zeta 2 globin promoter and the alpha globin regulatory element (HS-40) located 40 kb upstream of the zeta 2 globin gene. It was shown by transient expression assay that HS-40 behaved as an authentic enhancer for high-level zeta 2 globin promoter activity in K562 cells, an erythroid cell line of embryonic and/or fetal origin. Although sequences located between -559 and -88 of the zeta 2 globin gene were dispensable for its expression on enhancerless plasmids, they were required for the HS-40 enhancer-mediated activity of the zeta 2 globin promoter. Site-directed mutagenesis demonstrated that this HS-40 enhancer-zeta 2 globin promoter interaction is mediated by the two GATA-1 factor binding motifs located at -230 and -104, respectively. The functional domains of HS-40 were also mapped. Bal 31 deletion mapping data suggested that one GATA-1 motif, one GT motif, and two NF-E2/AP1 motifs together formed the functional core of HS-40 in the erythroid-specific activation of the zeta 2 globin promoter. Site-directed mutagenesis further demonstrated that the enhancer function of one of the two NF-E2/AP1 motifs of HS-40 is mediated through its binding to NF-E2 but not AP1 transcription factor. Finally, we did genomic footprinting of the HS-40 enhancer region in K562 cells, adult nucleated erythroblasts, and different nonerythroid cells. All sequence motifs within the functional core of HS-40, as mapped by transient expression analysis, appeared to bind a nuclear factor(s) in living K562 cells but not in nonerythroid cells. On the other hand, only one of the apparently nonfunctional sequence motifs was bound with factors in vivo. In comparison to K562, nucleated erythroblasts from adult human bone marrow exhibited a similar but nonidentical pattern of nuclear factor binding in vivo at the HS-40 region. These data suggest that transcriptional activation of human embryonic zeta 2 globin gene and the fetal/adult alpha globin genes is mediated by erythroid cell-specific and developmental stage-specific nuclear factor-DNA complexes which form at the enhancer (HS-40) and the globin promoters.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4076-4076
Author(s):  
Valya Ramakrishnan ◽  
Kajari Bhattacharya ◽  
Betty Pace

Abstract Abstract 4076 Poster Board III-1011 The reactivation of fetal hemoglobin has been shown to ameliorate symptoms of sickle cell disease. Previous work from our laboratory demonstrated that histone deacetylase inhibitors such as Trichostatin A and sodium butyrate activate γ-globin gene expression via p38 MAPK signaling. Using a transient luciferase genetic reporter system, the trans-factors cAMP response element binding protein 1 (CREB1) and activating transcription factor-2 (ATF-2) were shown to trans-activate the Gγ-globin CRE, located upstream at nucleotide -1222. To study this regulatory element in a native chromatin conformation, we cloned the Gγ-globin promoter (-1500 to +36) into pGL4.17 Luc2/neo to produce the pGγLuc2 reporter construct. In addition, three mutant plasmids were created by site directed mutagenesis including the -1225 G/A mutation (pGγLuc2m1), -1227 AC/TG mutations (pGγLuc2m2) and a scrambled G-CRE, 5'-TCTATGTA-3' (pGγLuc2m3S). Each reporter along with the empty vector control (pGL4.17 Luc2/neo) was transfected into K562 cells and five stable lines including KLuc2, KGγLuc2, KGγLuc2(m1), KGγLuc2(m2) and KGγLuc2(m3s) were established using the G418 selectable marker. Luciferase activity in KGγLuc2 was 700-fold higher than the promoterless Kluc2 stable line. When the G-CRE element was mutated, we observed a 70 to 80 % decrease (p<0.05) in luciferase activity in the three mutant lines. Furthermore, a loss of Gγ-promoter inducibility was observed in the mutant lines. Treatment with butyrate (2mM) or Trichostatin A (0.5μM) resulted in a 3-fold increase of luciferase activity for the wild-type KGγLuc2 line while a 5-fold loss of inducibility was observed in the mutant stable lines. These studies support a functional role for the G-CRE in γ-globin transcription. To expand our understanding of p38 MAPK signaling in G-CRE function, siRNA studies were completed. In wild-type K562 cells, p38 siRNA molecules produced a 95% decrease in target p38 MAPK mRNA levels and a concomitant 65% loss of γ-globin expression was observed. This demonstrated that p38 MAPK is required for steady-state γ-globin gene transcription. When p38 MAPK siRNA knockdown was performed in the KGγLuc2 stable line we observed 30% reduction in luciferase activity, while this effect was lost in the mutant stable lines. Additional siRNA studies will be completed in the stable lines to determine if the target trans-factors CREB1 and ATF-2 mediate the effect of p38 MAPK in the context of chromatin. Chromatin immunoprecipitation assay will also be performed to determine in vivo binding to the G-CRE. Elucidating regulatory elements involved in γ-globin gene regulation will provide novel approaches for fetal hemoglobin induction as a treatment for sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3752-3752
Author(s):  
Jianqiongz Zhu ◽  
Kyung Chin ◽  
Wulin Aerbajinai ◽  
Cecelia D Trainor ◽  
Gao Perter ◽  
...  

Abstract Abstract 3752 The β-hemoglobinopathies sickle cell disease and β-thalassemia are among the most common human genetic disorders worldwide. Hemoglobin A2 (HbA2, α2δ2) and fetal hemoglobin (HbF, a2γ2) both inhibit the polymerization of hemoglobin S that results in erythrocyte sickling. Expression of erythroid Kruppel-like factor (EKLF) and GATA1 is critical for transitioning hemoglobin from HbF to hemoglobin A (HbA, α2β2) and HbA2. The lower levels of δ-globin expression compared with β-globin expression seen in adulthood are likely due to the absence of an EKLF-binding motif in the δ-globin proximal promoter. In an effort to upregulate δ-globin to increase HbA2 expression, we created a series of EKLF-GATAl fusion constructs composed of the transactivation domain of EKLF and the DNA-binding domain of GATAl and then tested their effects on hemoglobin expression. EKLF-GATAl fusion proteins activated δ-, γ-, and β-globin promoters in K562 cells, and significantly upregulated δ- and γ-globin RNA transcripts and proteins expression in K562 and CD34+ cells. The binding of EKLF-GATA1 fusion proteins at the GATA1 consensus site in the δ-globin promoter was confirmed by chromatin immunoprecipitation assay. Our studies demonstrate that EKLF-GATA1 fusion proteins can enhance δ-globin expression through interaction with the δ-globin promoter, and may represent a potentially new genetic therapeutic approach to β-hemoglobinopathies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 353-353 ◽  
Author(s):  
Kenneth R Peterson ◽  
Flavia C Costa ◽  
Halyna Fedosyuk ◽  
Renee Neades ◽  
Johana Bravo de los Rios ◽  
...  

Abstract Abstract 353 Sickle cell disease (SCD) impacts one of 400 African-Americans born each year. Augmentation of fetal hemoglobin (HbF) levels is widely accepted as the most effective method for treating SCD, but hydroxyurea (HU) is currently the only approved drug that increases HbF. Thus, there is a need for the development of new therapies for this disease, including the identification of transcriptional activators that specifically up-regulate γ-globin (HbF). Developmental regulation of human β-like globin gene switching is controlled by several parameters, including cis- and trans-acting transcriptional determinants. Understanding the mechanisms underlying control of globin gene expression, particularly those involved in activation of γ-globin expression (HbF) is important for developing new treatments for SCD. Metal-responsive transcription factor-1 (MTF-1) is a key regulator of zinc metabolism in higher eukaryotes that controls the metal-inducible expression of metallothioneins and a number of other genes directly involved in the intracellular sequestration and efflux transport of zinc. Previous studies demonstrated that MTF-1 plays an essential role in liver development and that MTF-1-deficient mice display an anemic phenotype, suggesting a role for MTF-1 in hematopoiesis. In our study, when murine MTF-1 was expression was enforced, we observed a 5-fold increase in γ-globin expression in K562 cells. We also demonstrated increased γ-globin expression in adult blood from MTF-1 human β-globin locus yeast artificial chromosome (β-YAC) bi-transgenic (bigenic) mouse lines at the mRNA level by quantitative real-time RT-PCR (qPCR) and at the protein level by FACS analysis. Lastly, γ-globin gene expression was induced 12-fold in bone marrow cells (BMCs) derived from these bigenic mice compared to BMCs derived from β-YAC-only mice, and 3-fold after 6 hours of zinc treatment in β-YAC-only BMCs. Corroborative studies including zinc-deficient and zinc replete diets in β-YAC mice and erythroid-specific MTF-1 loss-of-function in loxP-flanked-MTF-1 LCR-β-globin promoter-Cre β-YAC mice further support a role for MTF-1 in g-globin gene expression. Chromatin immunoprecipitation (ChIP) analysis did not show recruitment of MTF-1 to any γ-globin gene-proximal metal response elements (MREs), the DNA motif that MTF-1 binds to control zinc metabolism genes. However, GATA-2 co-immunoprecipitated with MTF-1 in MTF-1 β-YAC BMCs, but not in β-YAC-only BMCs, suggesting that reactivation of γ-globin expression by MTF-1 might be mediated by a MTF-1-GATA-2 protein complex. ChIP experiments indicated that MTF-1 and GATA-2 co-occupy the same sites in the γ-globin promoter. Two of the stronger co-recruitment regions contain not only GATA sites, but also non-canonical MREs that vary by 1 or 2 bp from the canonical 7 bp MRE core. Interestingly, GATA-2 was induced 2-fold in adult blood of MTF-1 β-YAC mice, and also 3.5-fold in MTF-1 β-YAC BMCs treated with zinc for 6 hours. Our data suggest that activation of γ-globin by MTF-1 is mediated by protein-protein interaction with GATA-2 and that this multi-protein complex is targeted to GATA sites located in the γ-globin gene-promoters via binding of the GATA-2 protein. In a previous study we identified testis-specific protein Y-like 1 (TSPYL1) as a candidate gene involved in activation of γ-globin (de Andrade et al., 2006, Blood Cells, Mol. & Dis. 37:82). TSPYL1 mRNA level was increased 2–5 fold in deletional hereditary persistence of fetal hemoglobin (HPFH-2) subjects and decreased in a carrier of the Sicilian δβ-thalassemia trait. TSPYL1 is a transcription factor that is a member of the nucleosome assembly protein (NAP) family. TSPYL1 is not a DNA-binding protein; thus it exerts its effect through protein-protein interactions. When we enforced expression of human TSPYL1 in K562 cells an 11-fold induction of γ-globin expression was obtained. A reduction of γ-globin expression was observed following TSPYL1 knockdown in K562 cells. qPCR analysis of blood from TSPYL1 β-YAC bigenic mice showed that γ-globin expression was increased 4–12-fold. Taken together, our data strongly support the evidence that MTF-1 and TSPYL1 reactivate γ-globin expression in adult erythropoiesis. These two proteins represent potential new targets in strategies to reactivate γ-globin in hemoglobinopathies where higher levels of HbF would have beneficial effects. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 8 (12) ◽  
pp. 5310-5322 ◽  
Author(s):  
D L Gumucio ◽  
K L Rood ◽  
T A Gray ◽  
M F Riordan ◽  
C I Sartor ◽  
...  

The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P < .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P < .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


Sign in / Sign up

Export Citation Format

Share Document