scholarly journals Fetal Hemoglobin in Sickle Hemoglobinopathies: High HbF Genotypes and Phenotypes

2020 ◽  
Vol 9 (11) ◽  
pp. 3782
Author(s):  
Martin H. Steinberg

Fetal hemoglobin (HbF) usually consists of 4 to 10% of total hemoglobin in adults of African descent with sickle cell anemia. Rarely, their HbF levels reach more than 30%. High HbF levels are sometimes a result of β-globin gene deletions or point mutations in the promoters of the HbF genes. Collectively, the phenotype caused by these mutations is called hereditary persistence of fetal hemoglobin, or HPFH. The pancellularity of HbF associated with these mutations inhibits sickle hemoglobin polymerization in most sickle erythrocytes so that these patients usually have inconsequential hemolysis and few, if any, vasoocclusive complications. Unusually high HbF can also be associated with variants of the major repressors of the HbF genes, BCL11A and MYB. Perhaps most often, we lack an explanation for very high HbF levels in sickle cell anemia.

Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817 ◽  
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

Abstract A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 411-414 ◽  
Author(s):  
MC Stevens ◽  
GH Maude ◽  
M Beckford ◽  
Y Grandison ◽  
K Mason ◽  
...  

Abstract alpha Thalassemia modifies the hematologic expression of homozygous sickle cell (SS) disease, resulting in increased total hemoglobin and HbA2 and decreased HbF, mean cell volume, reticulocytes, irreversibly sickled cells, and bilirubin levels. The age at which these changes develop in children with SS disease is unknown. Ascertainment of globin gene status in a large representative sample of children with SS disease has afforded an opportunity to study the hematologic indices in nine children homozygous for alpha thalassemia 2 (two-gene group), 90 children heterozygous for alpha thalassemia 2 (three-gene group), and 167 children with a normal alpha globin gene complement (four-gene group). The two-gene group had significantly lower mean cell volumes from birth, higher red cell counts from one month, lower reticulocytes from three months, and higher HbA2 levels from one year, as compared with the four-gene group. Children with three genes had intermediate indices but resembled more closely the four-gene group. Differences in total hemoglobin or in fetal hemoglobin between the groups were not apparent by eight years of age. The most characteristic differences of the two-gene group were the raised proportional HbA2 level and low mean cell volume, the latter having some predictive value for alpha thalassemia status at birth.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 108-108 ◽  
Author(s):  
Diego F. Wyszynski ◽  
Clinton T. Baldwin ◽  
Mario Cleves ◽  
John J. Farrell ◽  
Alice Bisbee ◽  
...  

Abstract Hydroxyurea (HU) is an effective treatment for most patients with symptomatic sickle cell anemia, yet the fetal hemoglobin (HbF) response to treatment is variable. A capacity to predict an individual’s HbF response to HU would aid the selection of patients for treatment and reduce toxicity from unfruitful dose escalation. Unfortunately, this is presently not possible. We hypothesized that HbF levels and the HbF response to HU are regulated as complex genetic traits and previously showed that 12 single nucleotide polymorphisms (SNPs), associated with a 20% to 30% difference in baseline HbF concentrations, were found in the introns of 4 genes, PDE7B, MAP7, MAP3K5 and PEX7, spanning the genomic region from 136.1 Mb to 137.5 Mb on chromosome 6q (Cell Mol Biol 50:23, 2004). To begin to define the genetic predictors of the HbF response to (HU), we examined SNPs in candidate genes and genetic loci in 214 patients with sickle cell anemia whose HbF levels were available before HU treatment was started and after these patients reached a stable dose of this drug. Forty-six candidate genes were chosen because of their possible role in HbF regulation and HU metabolism and 226 SNPs in these genes were examined by mass spectrometry. A computer application developed in STATA was used to carry out multiple linear regression analysis with simultaneous adjustment for age, sex and the α- and β-globin gene cluster haplotypes for each SNP and combinations of nearby SNPs. Dominant, codominant and recessive models for modulating HbF expression were tested. In this QTL analysis, SNPs in a member of the cytochrome P450 family (CYP2C9), in aquaporin 9 (AQP9) and in the chromosome 6q qtl described above were significantly associated with the HbF response to HU. The effect of genotype on the magnitude of HbF response to HU was examined for selected SNPs in AQP9 and CYP2C9. In AQP9, AA was associated with an average increase of 6% in HbF compared with GG (rs1867380; OR 6.6, p<0.001). In CYP2C9, AG was associated with an average increase of 3% and GG with an average increase of 11% (rs2209331; OR 1.6 and 7.5, p=0.05, 0.000). An effect was also noted for the 6q qtl. We also treated the increase in HbF as a discretized variable, comparing individuals in the lower two quartiles of HbF response with individuals in the top quartile of HbF response to HU (Blood 89:1078, 1997). These same genotypes were more common in good HU responders than in poor responders (p<0.05). CYP2C9 (10q24) encodes a member of the cytochrome P450 superfamily of enzymes, monooxygenases catalyzing many reactions involved in drug metabolism, plays some role in the metabolism of HU derivatives. AQP9 (15q22.1–22.1), belongs to a family of water-selective membrane channels and stimulates urea transport, permitting passage of many uncharged solutes. These results begin to define the pattern of genetic heterogeneity that may be used ultimately to predict a patient’s HbF response to HU. As multiple genes are very likely to play roles in this response, the interactions and predictive value of their polymorphisms will need to be modeled with methods that account for simultaneous associations.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 845-848 ◽  
Author(s):  
IS Han ◽  
HJ Huang ◽  
YT Zeng ◽  
KD Lanclos ◽  
TH Huisman

Abstract We have determined the nucleotide sequence of the 2,360-bp long EcoRI fragment from four chromosomes; this fragment is located 3′ to the A gamma globin gene and is considered to contain the enhancer element identified by Bodine and Ley. The chromosomes were from an Arabian sickle cell anemia patient with high Hb F and a homozygosity for haplotype No 31 and from a black sickle cell anemia patient with low Hb F and a homozygosity for haplotype No 19. A third chromosome carried the determinant for a nondeletional hereditary persistence of fetal hemoglobin seen in a Chinese subject, and the fourth was a normal chromosome from a Yugoslavian subject. Twenty-one differences were observed when a comparison was made with the published sequence; no differences were seen between the sequences of the four different samples except for an additional mutation in the Chinese. These data make it unlikely that specific mutations within this sequence are associated with increases in G gamma and A gamma production.


Blood ◽  
2019 ◽  
Vol 133 (8) ◽  
pp. 852-856 ◽  
Author(s):  
Gabriella E. Martyn ◽  
Beeke Wienert ◽  
Ryo Kurita ◽  
Yukio Nakamura ◽  
Kate G. R. Quinlan ◽  
...  

Abstract β-hemoglobinopathies, such as sickle cell disease and β-thalassemia, result from mutations in the adult β-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of β-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The −113A>G HPFH mutation falls within the −115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the −113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the −113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the −113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Blood ◽  
1984 ◽  
Vol 63 (1) ◽  
pp. 64-72 ◽  
Author(s):  
PF Milner ◽  
JD Leibfarth ◽  
J Ford ◽  
BP Barton ◽  
HE Grenett ◽  
...  

Abstract Members of 7 large families, containing 20 patients with sickle cell anemia (SS) characterized by high levels of fetal hemoglobin (HbF), were studied using immunofluorescence to count F cells and a radioimmunoassay to measure small amounts of HbF. In five of these families, one of the sickle cell trait (AS) parents had a much higher HbF and F-cell count than the other; in one family, both parents had a marked increase in HbF and F cells; in the remaining family, HbF and F cells were at borderline values in both parents. Seven of 14 AS siblings, but only 1 of 8 normal hemoglobin (AA) siblings, also had HbF and F-cell counts above the “normal” range. It seems that a factor for increased F cells, linked to the beta S gene of one parent, is segregating in these families and is responsible for the greatly increased HbF and F cells in the SS subjects. HbF per F cell in AS parents and siblings was the same as that of normal AA subjects, whereas in the SS offspring it was greatly increased, suggesting that it was the result of marrow hyperplasia associated with their hemolytic anemia. The similarity of this “increased F-cell gene” to heterocellular hereditary persistence of fetal hemoglobin (HPFH). Swiss type, is discussed, and it is suggested that it may control the persistent synthesis of HbF in sickle cell anemia by its presence in early infancy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3171-3171
Author(s):  
Russell E. Ware ◽  
Barry Eggleston ◽  
Tatiana Abramova ◽  
Sherri A. Zimmerman ◽  
Alice Lail ◽  
...  

Abstract Fetal hemoglobin (HbF) is recognized as a major determinant of clinical disease severity in children and adults with sickle cell anemia (SCA). Patients with elevated HbF levels have a milder disease course, and many current therapeutic protocols for SCA include pharmacological induction of HbF. However, baseline and treatment HbF levels vary widely due to presumed genetic and environmental factors. Recognized globin gene modifiers of HbF include the beta globin haplotype and a potential contribution from concomitant alpha thalassemia. To characterize more fully the influence of globin gene modifiers on both baseline and treatment HbF levels, we retrospectively determined the beta globin haplotype (Benin, CAR, Senegal, Cameroon, or Arab-Indian) by selective gamma globin gene nucleotide sequencing and the alpha globin gene number (2, 3, or 4) by PCR for 67 African-American children with SCA receiving hydroxyurea therapy at stable maximal tolerated dose (MTD). The four beta globin haplotypes and frequencies identified in our cohort of children include Benin (0.61), CAR (0.17), Senegal (0.12), and Cameroon (0.10). The number of alpha globin genes and frequencies identified were 4 genes (0.72), 3 genes (0.25) and 2 genes (0.03). Baseline and MTD HbF levels were analyzed according to each variable. The average baseline HbF value for the entire cohort of children was 7.7 ± 4.4% (median 7.6%, range 1.3 – 19.3%), while the average treatment HbF value was 23.9 ± 7.2 % (median 22.9%, range 10.2 – 40.7%). All 67 children increased their HbF in response to hydroxyurea therapy (median 16.7%, range 5.0 – 28.8%). There was a modest but statistically significant correlation between the baseline and treatment HbF (r=0.66, p<.0001). The estimated effect of one unit change in baseline HbF on treatment HbF was 1.11 (95% CI of 0.78, 1.43). When baseline %HbF was analyzed according to the beta globin haplotype, the overall ANOVA had a p-value of 0.02, indicating a statistically significant influence. Further analysis confirmed associations previously identified in adults with SCA, i.e. children with at least one copy of the CAR haplotype had a lower baseline HbF (5.9% vs 8.4%, p=.05), while those with at least one copy of the Senegal haplotype had a higher baseline HbF (11.1% vs 6.7%, p<.001). When hydroxyurea MTD (treatment) HbF values were analyzed according to beta globin haplotype while adjusting for baseline HbF, however, the effect of beta globin haplotype was not statistically significant (p=.13). Analyses of HbF according to alpha globin gene number revealed no statistically significant effects on either baseline or treatment HbF values. Taken together, these data support the hypothesis that beta globin haplotype significant influences baseline HbF values for children with SCA, but has no significant effects on hydroxyurea MTD HbF values. Accordingly, children with SCA should be offered hydroxyurea based solely on clinical indications, without consideration of baseline HbF or beta globin haplotype. Even children with low baseline HbF values or the CAR beta globin haplotype can respond to hydroxyurea therapy with an elevated %HbF. Future studies designed to identify genetic modifiers of treatment HbF values should focus on sequence polymorphisms in non-globin genes that have trans-acting effects on gamma globin gene expression.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


Sign in / Sign up

Export Citation Format

Share Document