scholarly journals HMGB1 As a Novel Platelet Agonist That Acts Synergistically with ADP to Activate Platelets in Sickle Cell Disease

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1073-1073
Author(s):  
Deirdre Nolfi-Donegan ◽  
Sruti Shiva ◽  
Cheryl A Hillery

Abstract Background: Sickle cell disease (SCD) is a proinflammatory and prothrombotic disorder that exhibits increased platelet activation. High mobility group box 1 (HMGB1) is a nuclear protein that can mediate inflammation when released from inflammatory or ischemic cells. HMGB1 is increased in many inflammatory disease states including SCD. Recent data suggests HMGB1 activates platelets and may work synergistically with potent platelet agonists such as collagen and thrombin, but little is known regarding HMGB1-platelet interactions in combination with weaker agonists like ADP, or in isolated platelets. Moreover, the effect of HMGB1 on platelet activation has not been evaluated in SCD. We hypothesized that the in vitro addition of low-dose recombinant HMGBI (rHMBG1) to isolated platelets will lower the threshold dose of physiologic agonists required to achieve platelet activation, and that this effect is exaggerated in SCD. Methods: Platelets were isolated from healthy controls (n=4) and patients with hemoglobin SS disease (SCD; n=5). The level of platelet activation was assessed after treatment with ADP at concentrations of 0 μM, 0.5 μM, 2 μM, and 5 μM with the addition of either low-dose rHMGB1 (10 μg/mL) or the same volume of vehicle. Percent platelet activation was measured via flow cytometry using PE antibody to GPIIb (CD41) to select for platelets, and PAC1 to detect the activation-dependent conformational change in integrin αIIbβ3 (GP IIb-IIIa). Platelet activation was interpreted as percent of platelets that bound PAC1. Data was analyzed using FlowJo software and nonparametric statistical tests. Results: Mean baseline platelet activation was 1.5% (range 0.4-3.3%) for control platelets and 7.3% (1.4-17.7%) for SCD platelets (p=0.19). In the SCD group, the addition of low-dose rHMGB1 (10 μg/mL) increased the mean percent of activated platelets from 7.3% to 26.5% (10.9-43%) (p=0.01). In comparison, mean activation of control platelets increased from only 1.5% to 19.5% (8.3-42.7%) after addition of rHMGB1 (p=0.12). Having illustrated that rHMGB1 can activate washed SCD platelets, we then compared the synergistic effect of rHMGB1 with ADP. There was increased platelet activation observed when ADP was added to rHMGB1 in SCD platelets: ADP 0.5 μM increased mean platelet activation from 13.8% (range 0.3-25.3%) to 54.4% (6.7-84.9%) with the addition of rHMGB1 (p=0.02); ADP 2 μM increased platelet activation from 14.1% (2.8-23.8%) to 56.2% (22.2-88.6%) with rHMGB1 (p=0.006); and ADP 5 μM increased platelet activation from 21.4% (2.5-30.1%) to 65.3% (31.7-85.9%) after adding rHMGB1 (p=0.004) (Fig 1; * and **, diamonds vs stars). We did not find a similar statistically significant synergistic effect in the control samples treated with ADP compared to combined HMGB1 + ADP, except at ADP dose 2 μM where platelet activation increased from 14.94% (4.6-28.6%) to 39.1% (19.5-56.0%) after the addition of rHMGB1 (p=0.04; Fig 1; #, square vs circle). Activation of platelets with just ADP was not different comparing control with SCD platelets (Fig 1; circles vs stars). Similarly, activation of platelets with both ADP and rHMGB1 was not significantly different comparing control with SCD platelets except for a trend at 0.5 μM ADP + rHMGB1 10 μg/mL with 19.29% (6.6-38.7) in controls vs 54.44% (6.7-84.9) in the SCD group (p=0.07) (Fig 1; diamonds vs squares). Summary: We found that rHMGB1 acts both independently and synergistically with ADP to increase platelet activation in SCD platelets. In our small cohort, SCD platelets had increased responsiveness to low dose-rHMGB1 compared to control platelets. Moreover, combining rHMGB1 with ADP greatly enhanced platelet activation in SCD but not control platelets. Our data suggest that SCD platelets are sensitized to HMGB1 in the presence of weaker agonists such as ADP. This heightened responsiveness of SCD platelets to HMGB1 may explain the enhanced platelet activation and inflammation associated with SCD in vivo. With further study, HMGB1 could be a target of clinical drug-directed therapy in SCD patients. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
1980 ◽  
Vol 56 (6) ◽  
pp. 1041-1047 ◽  
Author(s):  
TG Gabuzda ◽  
TL Chao ◽  
MR Berenfeld ◽  
T Gelbart

Abstract Studies of the survival time of 51Cr labeled erythrocytes treated in vitro with methyl acetimidate (MAI) were conducted in 13 patients with sickle cell disease in order to assess the suitability of this antisickling agent for more extensive clinical testing. In comparison with previously measured control values (average t1/2 8.4 +/- 1.1 days a), the survival time of the treated erythrocytes in 10 of the patients who were not transfused was initially prolonged (average t1/2 24.4 +/- 4.6 days). However, 5 of the 13 patients studied developed circulating antibody against the MAI treated erythrocytes, markedly reducing the survival time of MAI treated erythrocytes in subsequent studies. Two patients, each challenged 3 times with infused MAI treated erythrocytes, failed to show evidence of antibody production, suggesting that not all subjects become immunized even after repeated exposure. In spite of many other promising properties of MAI as an antisickling agent of potential value, consideration of its use in further clinical testing must depend on successful avoidance of immunization in patients receiving infusions of treated erythrocytes.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3919-3919
Author(s):  
Zhou Zhou ◽  
Han Hyojeong ◽  
Miguel A. Cruz ◽  
Jose A. Lopez ◽  
Jing-fei Dong ◽  
...  

Abstract One of the hallmark events of sickle cell disease (SCD) is vasoocclusion and episodic pain crisis. Although the mechanism of vascular occlusion is very complicated, processes like thrombosis and thromboembolism have been recognized to play an important role in the development of such clinical manifestation in SCD. Studies have shown that the von Willebrand factor (VWF), especially the ultra-large (UL) multimers play a major role in vasoocclusion, which clearly indicates a possible impairment of the VWF-cleaving metalloproteae ADAMTS-13 in these patients with SCD. In a recent work, indeed we have mentioned that the plasma ADAMTS-13 in patients with SCD having normal antigen level showed 35% less protease activity than the normal. There may be several plasma factors responsible for the acquired deficiency of ADAMTS-13 in SCD. Since, the increasing evidences suggest that the elevated level of extracellular hemoglobin (Hb) in plasma parallely associated with the pathogenesis of SCD, we investigated the effects of extracellular Hb on VWF proteolysis by ADAMTS-13. We observed that purified Hb dose-dependently inhibited the ADAMTS-13 cleavage of recombinant(r) VWF and endothelial ULVWF multimers under static and flow conditions. Hb bound to VWF multimers in a saturation-dependent manner and more potently to the rVWFA2 domain (affinity Kd~24nM), which contains the cleavage site for ADAMTS-13. Hb bound also to the ADAMTS-13 (Kd~65nM), with 2.7 times less affinity than to VWFA2. The bindings were neither calcium-dependent nor affected by haptoglobin. However, it is the Hb-binding to VWF that prevented the substrate from being cleaved by ADAMTS-13. These in vitro findings are consistent with the in vivo observations in patients with SCD. An elevated level of extracellular Hb in plasma was inversely correlated (linear regression, r2 =0.6354) with the low activity of ADAMTS-13 in a cohort of ten adult patients with SCD (mean±SE, Hb 346±138 mg/l; activity 33.3±30%) compared to age and gender-matched normal individuals (n=10; Hb 24±8 mg/l; activity 76.2±16%). The data together suggest that patients with SCD suffer from acquired ADAMTS-13 deficiency, primarily because Hb competitively binds and inhibits the proteolysis of VWF multimers, leading to ULVWF accumulation on vascular endothelium and in circulation. The Hb-VWF interaction may therefore be considered as a therapeutic target for reducing thrombotic and vasoocclusive complications in patients with severe hemolysis such as those with SCD.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1049-1049
Author(s):  
Joseph A. Jakubowski ◽  
Chunmei Zhou ◽  
David S. Small ◽  
Kenneth J. Winters ◽  
D. Richard Lachno ◽  
...  

Abstract Abstract 1049 Introduction: Evidence suggests that platelets are activated in sickle cell disease (SCD) and this appears to increase further during painful crises caused by vascular occlusions from sickled red blood cells. Antiplatelet therapy may be useful in reducing the frequency and severity of acute pain episodes and reducing the risk of thrombotic complications. Prasugrel, an ADP receptor antagonist, irreversibly inhibits the P2Y12 ADP receptor, blocking ADP-stimulated platelet activation and aggregation and reducing downstream procoagulant activities. Here we present the first evaluation of prasugrel's effects on markers of in vivo platelet activation and of coagulation in subjects with SCD. Methods: Twenty-six adult subjects were enrolled and 25 completed the study: 12 with SCD and 13 well-matched healthy controls. Subjects were examined before and after 12±2 days of treatment with oral prasugrel (5.0 mg/day for subjects weighing <60 kg and 7.5 mg/day for subjects weighing ≥60 kg). Markers of platelet activation and coagulation included whole-blood platelet-monocyte and -neutrophil aggregates, and whole blood platelet-associated P-selectin and platelet CD40L, all measured by flow cytometry and presented as percent (%) of marker positive cells. Plasma soluble (s) P-selectin, CD40L, and plasma prothrombin fragment 1.2 (F1.2) were evaluated by ELISA. Results: Results from the biomarkers are presented in the table. Prior to prasugrel administration (baseline), subjects with SCD had significantly higher levels of the following biomarkers compared to healthy subjects: Platelet-monocyte aggregates, platelet-neutrophil aggregates, platelet CD40L, and plasma F1.2. In addition, subjects with SCD had numerically higher values of sCD40L, as well as platelet-associated and sP-selectin. Prasugrel treatment resulted in numerical decreases in levels of all biomarkers (with the exception of platelet-associated CD40L for control subjects), most notably in SCD subjects with elevated baseline levels. Prasugrel was safe and well tolerated with no serious adverse events observed during the study. No subject discontinued the study due to an adverse event (AE) and the majority of AEs were mild. No subjects with SCD reported any bleeding-related AEs. Conclusion: In this study, compared to healthy controls, baseline elevation of several platelet-activation and coagulation markers among adult subjects with SCD is consistent with that seen in previous studies of both children and adults with SCD. The decrease in platelet activation biomarkers following 12 days of prasugrel treatment in subjects with SCD suggests prasugrel interrupts SCD-related platelet activation in vivo and raises the possibility that prasugrel may modulate the frequency and/or severity of painful crises associated with SCD. These data support additional studies of the safety and efficacy of prasugrel in the treatment of vascular complications associated with SCD. Disclosures: Jakubowski: Eli Lilly and Company: Employment, Equity Ownership. Off Label Use: This abstract discusses prasugrel treatment in patients with sickle cell disease. Please see USPI for most up-to-date information. Zhou:Eli Lilly and Company: Employment, Equity Ownership. Small:Eli Lilly and Company: Employment, Equity Ownership. Winters:Eli Lilly and Company: Employment, Equity Ownership. Lachno:Eli Lilly and Company: Employment, Equity Ownership. Frelinger:Takeda: Research Funding; Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Consultancy, Research Funding; GLSynthesis: Research Funding. Howard:Daiichi Sankyo Company, Ltd. and Eli Lilly and Company: Research Funding. Payne:Eli Lilly and Compnay: Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5147-5147
Author(s):  
Andrew L. Frelinger ◽  
Joseph A. Jakubowski ◽  
Julie K. Brooks ◽  
Sabrina L. Zayas ◽  
Michelle A. Berny-Lang ◽  
...  

Abstract Abstract 5147 Platelet activation/aggregation in sickle cell disease (SCD) may promote tissue ischemia, suggesting antiplatelet therapy may be useful. However, assessing platelet function and the effect of antiplatelet therapy in blood from SCD patients may be confounded by hemolysis with release of ADP. Here we evaluate levels of platelet activation markers in SCD adolescents vs. normal controls and compare, by multiple methods, the effect of in vitro blockade of the platelet ADP receptor P2Y12 by prasugrel's active metabolite, R-138727. Platelet activation markers in blood from SCD adolescents (n=15) and healthy adults (n=10), and the effect of R-138727 (0. 1 – 10 μM) added in vitro, were evaluated with and without ADP stimulation. Circulating levels of platelet-monocyte and platelet-neutrophil aggregates were significantly higher (p <0. 01) in SCD patients than in healthy controls. R-138727, in a concentration-dependent manner, inhibited platelet function in both SCD patients and healthy subjects as judged by ADP-stimulated light transmission aggregation, VerifyNow P2Y12 assay, multiple electrode aggregometry, and flow cytometric analysis of platelet vasodilator-stimulated phosphoprotein, activated GPIIb-IIIa and P-selectin. The R-138727 IC50s for each assay were not significantly different in SCD vs. healthy subjects. In summary: 1) The high circulating levels of platelet-monocyte and platelet-neutrophil aggregates demonstrate in vivo platelet activation in SCD and may be useful as markers of the in vivo pharmacodynamic efficacy of antiplatelet therapy in SCD. 2) The similar in vitro R-138727 IC50s in SCD and healthy subjects suggest that the prasugrel dose-dependence for platelet inhibition in SCD patients will be similar to that previously observed in healthy subjects. Disclosures: Frelinger: Eli Lilly: Consultancy, Research Funding; Daiichi Sankyo: Research Funding; GLSynthesis: Research Funding. Jakubowski:Eli Lilly: Employment. Heeney:Novartis: Consultancy, Research Funding; Eli Lilly and Company: Research Funding; Pfizer: Consultancy. Michelson:Eli Lilly: Data monitoring committee and idependent external monitor of clinical trials, Research Funding; Takeda: Research Funding; Oxygen Biotherapeutics: Research Funding; Alexion: Research Funding; Omthera: Research Funding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2249-2249
Author(s):  
Michel Gowhari ◽  
Aileen Chu ◽  
Julie Golembiewski ◽  
Robert E. Molokie

Abstract Introduction Acute painful (vaso-occlusive) episode is the clinical hallmark of sickle cell disease (SCD). Individuals with SCD may experience acute episodes of severe debilitating pain that requires an acute care/emergency room visit and/or hospitalization. While parenteral opioids are the mainstay of treatment, the use of these agents may be complicated by toxicity, tolerance, and opioid-induced hyperalgesia. Additionally, using one medication/mode of treatment may be inadequate to achieve optimal safe pain control. Ketamine as an adjuvant treatment (administered in low sub-anesthetic doses) has been recognized for its utility in the management of a variety of painful conditions, ranging from oncologic to post-operative pain. However, there is limited literature supporting its use in treating acute sickle painful episodes. Here we have undertaken a retrospective analysis of adult patients with SCD who were treated with low-dose ketamine infusion during an acute painful episode in order to determine its effects of lowering opioid requirements. Methods A retrospective chart and database review was conducted on all patients with SCD who received low-dose ketamine infusion during an acute painful episode in the past three years at a single institution. After a review of inpatient pharmacy records, thirty unique subjects with SCD were identified to have received low-dose ketamine infusion during an acute painful episode in the past three years. For each of these subjects, total and daily (24hr) opioid requirements were determined for the admissions of a vaso-occlusive episode where ketamine infusion was used as an adjuvant for pain control and compared to the prior admission. For the ketamine admission, opioid requirements before, during, and after infusion were also compared. The opioid requirement was converted to intravenous morphine equivalents for standardized comparison. Total opioid and daily (24hr) requirements were determined for each admission. Results Full analysis of all thirty subjects (uncomplicated and complicated pain crises, ketamine infusion of any duration) revealed that the opioid requirement was significantly lower after ketamine compared to before ketamine was started (Wilcoxon signed-rank test P=0.029). The total opioid requirement during the entire ketamine admission, however, was not significantly different from the total opioid requirement during the non-ketamine admission (P=0.088). When a sub-analysis was performed on subjects receiving a ketamine infusion for greater than 24 hours (N=22), the 24hr opioid requirement was significantly lower after ketamine compared to before ketamine was started (P=0.0397). The total opioid requirement during the entire ketamine admission was not significantly different from the total opioid requirement during the non-ketamine admission (P=0.194). When a sub-analysis was performed on subjects with an uncomplicated vaso-occlusive episode (N=17), 24hr opioid requirement was significantly lower after ketamine compared to before ketamine was started (P=0.036). Additionally, the average daily opioid requirement throughout the entire ketamine admission was significantly lower than the average daily opioid requirement during the non-ketamine admission (P=0.001). The total opioid requirement during the entire ketamine admission was not significantly different from the total opioid requirement during the non-ketamine admission (P=1). For the full and subgroup analyses of opioid requirements during the ketamine admission, there was a significantly greater amount of opioid required before the ketamine was started compared to during and after ketamine infusion. Conclusion The use of low-dose infusion of ketamine as an adjuvant for pain control in patients with SCD during vaso-occlusive episode resulted in a significant decrease in opioid requirements. Hence it appears that a low-dose ketamine infusion has utility in the treatment of acute pain crises in adult patients with sickle cell disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2699-2699 ◽  
Author(s):  
E. Du ◽  
Laurel Mendelsohn ◽  
James S. Nichols ◽  
Ming Dao ◽  
Gregory J. Kato

Abstract Background: Under hypoxic conditions, sickle hemoglobin (HbS) polymerizes, causing morphologic distortion (sickling) of red blood cells (RBCs) in sickle cell disease (SCD). Aes-103 (5-hydroxymethylfurfural, 5-HMF) can stabilize the R-state and increase the oxygen affinity of hemoglobin, inhibiting the intracellular polymerization of HbS. Using a microfluidics-based hypoxia assay, we were able to track sickling of individual cells and quantify the anti-sickling effect of Aes-103 at millimolar (mM) levels in blood from SCD patients on hydroxyurea treatment (on-HU) and not on hydroxyurea treatment (off-HU). Method: We have developed a microfluidic assay that utilizes a gas permeable polydimethylsiloxane (PDMS) film 150 µm in thickness, to create a severe hypoxia microenvironment in a 5 µm deep chamber to measure cell sickling in vitro at 37°C. The hypoxia condition was 5 minutes in total, consisting of an initial oxygen-rich stage (20% O2), a transient deoxygenating stage (O2 concentration decreased to 5% within 15 second), and a steady-stage stage (O2 concentration decreased further and maintained at 2% for the rest of time). Blood samples from 3 on-HU and 3 off-HU patients were incubated with Aes-103 at concentrations of 0.5, 1, 2, and 5 mM for one hour at 37 degrees C, washed with Phosphate Buffered Saline and suspended in RPMI-1640 containing 1% w/v Bovine Serum Albumin for in vitro testing. Sickle RBCs undergoing sickling typically form spiky edges and a dark coarse texture due to intracellular HbS polymerization visually enhanced by a bandpass filter (Fig. 1A). The anti-sickling effect of Aes-103 was then quantified by the maximum sickled fraction (fraction of all RBCs that were morphologically distorted) under the hypoxia condition. Results: In the absence of Aes-103, the sickled fractions varied from 34% to 73% (Mean ± SD: 54% ± 18%). With the presence of Aes-103, the mean sickled fraction decreased with drug concentration (Fig. 1B), which can be well fitted with linear regression (R2= 0.95). With 2 mM Aes-103 incubation, each patient sample showed a significant decrease in cell sickling from its baseline. Addition of Aes-103 at 5 mM concentration prevented majority of RBCs from sickling (sickled fraction ≤ 5%). The sickled fraction of one patient sample was nearly zero. The distribution of sickled fractions does not completely correlate with the patient's HU status in this limited sample size (Fig. 1C). We also observed that hypoxia-induced sickling at baseline showed an apparent bimodal distribution, although the slope of response to Aes-103 concentration was similar. Conclusions: Our microfluidic assay enabled a rapid, quantitative characterization of cell sickling in vitro within a few minutes and using a single drop of whole blood patient sample. We confirmed the anti-sickling efficacy of Aes-103 for both on-HU and off-HU patient samples in a dosage-dependent manner. This assay has potential as a biomarker for drug development and monitoring for in vivo effect of potential anti-sickling therapeutics. Figure 1. (A) Identification of cell sickling from a microscopic image (arrows indicate the sickled RBCs). (B) Sickled fraction as a function of Aes-103 concentration. (C) Variation in response among different on-HU and off-HU patient samples. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4064-4064
Author(s):  
Pablo A. Rivera ◽  
Yaritza Inostroza ◽  
Jose R. Romero ◽  
Alicia Rivera

Abstract Excess levels of endothelin-1 (ET-1), erythrocyte sickling and chronic inflammation have been proposed as important contributors to the pathophysiology of sickle cell disease (SCD). We have shown that ET-1 receptor antagonists improve hematological parameters by reducing Gardos channel activity in two transgenic mouse models of SCD while reducing oxidant stress by decreasing circulating levels of protein disulfide isomerase. Magnesium (Mg2+) deficiency, mediated in part via increased erythrocyte Na+/Mg2+ exchanger activity, has been demonstrated to contribute to erythrocyte dehydration, K+ loss and sickling in SCD. However, the relationship between ET-1 and the Na+/Mg2+ exchanger in SCD remains unclear. We measured Na+/Mg2+ exchange activity in ex vivo red cells and observed increased activity following in vitro incubation of human (2.2 ± 0.2 to 3.2 ± 0.1 mmol/1013 cell x h, P<0.03, n=5) and mouse red blood cells with ET-1 (P<0.001, n=5); events that were significantly blocked by pre-incubation of cells with 1 μM BQ788, a selective inhibitor of ET-1 type B receptors. In addition, in vitro deoxygenation of sickle red cells led to increased exchanger activity that was inhibited by impramine, a Na+/Mg2+ exchange inhibitor, and associated with reduced deoxygenation-stimulated sickle cell dehydration. These results suggest an important role for ET-1 and cellular magnesium homeostasis in sickle cell disease. To this end, we studied Na+/Mg2+ exchange activity in ex vivo erythrocytes from three transgenic sickle mouse models and observed increased activity in these cells when compared to red cells from either Hb A transgenic or C57BL/J6 wild-type mice (P<0.03, n=4). We then tested the in vivo effects of ET-1 receptor antagonists on erythrocyte Na+/Mg2+ exchange activity in the BERK mouse, a transgenic model of SCD. We blocked ET-1 receptors type A and B by in vivo treatment with BQ-788 and BQ-123 (360mg/Kg/Day) for 14 days and observed lower erythrocyte exchanger activity when compared to cells from vehicle treated BERK mice (P<0.02, n=6). Thus our results suggest that ET-1 receptor blockade represents an important therapeutic approach to control erythrocyte volume and magnesium homeostasis that may lead to improved inflammatory and vascular complications observed in SCD. Supported by NIH R01HL090632 to AR. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Kamal Shemisa ◽  
Nasima Jafferjee ◽  
David Thomas ◽  
Gretta Jacobs ◽  
Howard J. Meyerson

A 34-year-old female with sickle cell anemia (hemoglobin SS disease) and severe iron overload presented to our institution with the subacute presentation of recurrent pain crisis, fever of unknown origin, pancytopenia, and weight loss. A CT scan demonstrated both lung and liver nodules concerning for granulomatous disease. Subsequent biopsies of the liver and bone marrow confirmed the presence of noncaseating granulomas and blood cultures isolatedMycobacterium aviumcomplex MAC. Disseminated MAC is considered an opportunistic infection typically diagnosed in the immunocompromised and rarely in immunocompetent patients. An appreciable number of mycobacterial infection cases have been reported in sickle cell disease patients without immune dysfunction. It has been reported that iron overload is known to increase the risk for mycobacterial infection in vitro and in vivo studies. While iron overload is primarily known to cause end organ dysfunction, the clinical relationship with sickle cell disease and disseminated MAC infection has not been reported. Clinical iron overload is a common condition diagnosed in the sub-Saharan African population. High dietary iron, genetic defects in iron trafficking, as well as hemoglobinopathy are believed to be the etiologies for iron overload in this region. Patients with iron overload in this region were 17-fold more likely to die fromMycobacterium tuberculosis. Both experimental and clinical evidence suggest a possible link to iron overload and mycobacterial infections; however larger observational studies are necessary to determine true causality.


2021 ◽  
Author(s):  
Sowmya Pattabhi ◽  
Samantha N Lotti ◽  
Mason P Berger ◽  
David J Rawlings

Sickle cell disease (SCD) is caused by a single nucleotide transversion in exon 1 of the HBB gene that changes the hydrophobicity of adult globin (βA), leading to substantial morbidity and reduced lifespan. Ex vivo autologous gene editing utilizing co-delivery of a designer nuclease along with a DNA donor template allows for precise homology-directed repair (HDR). These gene corrected cells when engrafted into the bone marrow (BM) can prove to be therapeutic and serves as an alternative to HLA-matched BM transplantation. In the current study, we extensively explored the role of single stranded oligonucleotide (ssODN) and recombinant adeno-associated 6 (rAAV6) donor template delivery to introduce a codon-optimized change (E6optE) or a sickle mutation (E6V) change following Crispr/Cas9-mediated cleavage of HBB in healthy human mobilized peripheral blood stem cells (mPBSCs). We achieved efficient HDR in vitro in edited cells and observed robust human CD45+ engraftment in the BM of NBSGW mice at 16-17 weeks. Notably, recipients of ssODN-modified HSC exhibited a significantly higher proportion of HDR-modified cells within individual BM, CD34+ and CD235+ compartments of both E6optE and E6V cohorts. We further assessed key functional outcomes including RNA transcripts analysis and globin sub-type expression. Our combined findings demonstrate the capacity to achieve clinically relevant HDR in vitro and in vivo using both donor template delivery method. The use of ssODN donor template-delivery is consistently associated with higher levels of gene correction in vivo as demonstrated by sustained engraftment of HDR-modified HSC and erythroid progeny. Finally, the HDR-based globin protein expression was significantly higher in the E6V ssODN-modified animals compared to the rAAV6-modified animals confirming that the ssODN donor template delivery outperforms rAAV6-donor template delivery.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 955-955
Author(s):  
Anren Song ◽  
d'Alessandro Angelo ◽  
Kaiqi Sun ◽  
Hong Liu ◽  
Zhangzhe Peng ◽  
...  

Abstract Although proteasome machinery is a conserved cellular component to maintain their normal function, its function in erythrocyte under stress conditions is largely unknown, especially in sickle cell disease (SCD). To determine whether proteasome machinery is altered in SCD erythrocyte, we conducted western blot to detect total ubiquitinated proteins on the erythrocyte membrane in both mice and humans with or without SCD. We found that ubiquitinated proteins were significantly accumulated in SCD mice and humans compared to WT mice and normal controls, indicating that proteasome machinery is halted in SCD. Next, to determine which specific proteins are ubiquitinated and accumulated in SCD, we conducted robust and nonbiased proteomic profiling by immunoprecipitation ubiquitinated proteins followed by proteomics analysis. We found significant accumulation of several categories of ubiquitinated proteins on the erythrocyte membrane in SCD, including cytoskeleton proteins (Spectrin, Actin, Ankryin), glycolytic enzymes (GAPDH, 2,3-BPG mutase, Pyruvate Kinase, G6PD), transporters (Band3, large neutral AA transporter, calcium transporter, ENT1), hemoglobin, components of proteasome machinery [E2, E3 ligases, and valosin-containing protein (p97)]. Finally, to determine the effect of halted proteasome machinery in SCD functionally, we conducted in vitro hypoxia induced red blood cell (RBC) sickling assay. We found that inhibition of RBC proteasome machinery by targeting p97 using CB-5083 or targeting proteasome using MG132 increases SCD RBC sickling. Overall, our findings reveal a novel role of halted proteasome machinery in the pathophysiology of SCD and open up new therapies for the disease. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document