scholarly journals Prophylactic Intervention with N-Acetyl-L-Cysteine before Allotransplant Could Reduce the Occurrence of Poor Hematopoietic Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2074-2074
Author(s):  
Yuan Kong ◽  
Yu Wang ◽  
Yuan-Yuan Zhang ◽  
Min-Min Shi ◽  
Xiao-Dong Mo ◽  
...  

Abstract Background Poor hematopoietic reconstitution including poor graft function (PGF), characterized by pancytopenia, and prolonged isolated thrombocytopenia (PT), defined as the engraftment of all peripheral blood cells other than platelets, remains a life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the clinical management is challenging. Endothelial cells (ECs) play a crucial role in regulating hematopoiesis in bone marrow (BM) microenvironment. N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, is clinical used as a mucolytic drug. In this regard, we reported that PGF and PT patients had impaired BM ECs post-HSCT (BBMT 2013; BMT2016;Blood 2016; AJH2018). Recently, we reported in vitro treatment with NAC could improve the defective HSCs through repairing the impaired BM ECs of PGF and PT patients (Blood 2016; AJH2018). However, our previous studies evaluated BM ECs in PGF and PT patients at +3 month(M) post-HSCT. Therefore, whether BM ECs dysfunction in PGF and PT patients is responsible for the defective hematopoiesis, or vice versa, requires to be further clarified. Moreover, prophylactic intervention to improve the impaired BM ECs and HSCs remains unidentified. Aims In order to investigate whether the defective BM ECs pre-HSCT is the risk factor for the occurrence of PGF and PT post-HSCT. Moreover, to evaluate whether prophylactic NAC intervention could repair the impaired BM ECs and reduce the incidence of PGF and PT. Methods Two registered prospective clinical trials were included. The first trial compared the dynamic reconstitution of the BM ECs pre- and post-HSCT among PGF, PT, and good graft function (GGF) patients at Peking University People's Hospital. Multivariate analyses were performed to identify the risk factors for the occurrence of PGF and PT. Receiver operating characteristic (ROC) curves were used to identify the cut-off percentage of BM ECs pre-HSCT to predict high risk patients for PGF and PT. Subsequently, the second trial was performed to investigate whether prophylactic NAC intervention could reduce the incidence of PGF and PT and its underlying mechanism. The quantity and function of BM ECs were evaluated at -14 day (D), 0D pre-HSCT, and +1M, +2M post-HSCT in the patients who were willing to provide BM samples after the written consent. Results In the first trial, 15 patients of the enrolled 68 patients developed PGF or PT, whereas the remaining 53 patients were GGF at +2M post-HSCT. PGF and PT patients demonstrated impaired BM ECs at -14D pre-HSCT and defective dynamic reconstitution at +1M, +2M post-HSCT. Moreover, the BM ECs impairment positively correlated with their ROS levels. Multivariate analysis identified BM EC<0.1% at -14D pre-HSCT was the independent risk factor for the higher incidence of PGF and PT post-HSCT. Based on the ROC cut-off percentage of BM ECs pre-HSCT, the enrolled patients were designated into EC≥0.1% group (N=38) and EC <0.1% group (N=30). Significant higher incidence of PGF and PT was found in EC<0.1% group compared to those in EC ≥0.1% group. The second trial enrolled EC<0.1% patients (N=35) to accept oral NAC (400 mg three times per day) from -14D pre-HSCT to +2M post-HSCT continuously. The remaining EC ≥0.1% patients (N=39) received allo-HSCT only. Prophylactic NAC intervention promoted the dynamic reconstitution of BM ECs and CD34+ cells, whereas reducing their ROS levels, in EC<0.1% group to the similar levels in EC≥0.1% group post-HSCT, which was further confirmed by in situ BM trephine biopsies analyses. No significant difference was observed in the incidence of PGF and PT between the two groups. Importantly, prophylactic NAC intervention significantly reduced the incidence of PGF and PT in EC<0.1% group of the second trial compared with those in EC<0.1% without prophylactic NAC group of the first trial. Summary / Conclusion: BM EC<0.1% at -14D pre-HSCT helps to identify high risk patients for the occurrence of PGF and PT post-HSCT. Prophylactic NAC intervention was safe and effective to prevent the occurrence of PGF and PT in EC<0.1% patients through repairing the impaired BM ECs. Although requiring validation, our data indicate that the impaired BM ECs pre-HSCT is responsible for the occurrence of PGF and PT. Therefore, improvement of BM ECs through prophylactic NAC intervention may represent a promising therapeutic approach to promote hematopoietic recovery post-HSCT. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5132-5132
Author(s):  
Maria Lucia Fuente ◽  
Maria Del Rosario Custidiano ◽  
Santiago Cranco ◽  
Laura Korin ◽  
Paola Ochoa ◽  
...  

BACKGROUND Patients with adverse cytogenetic or secondary AML (s-AML) have significantly worse outcomes and lower survival rates. In this high risk subgroup of patients, early consolidation with allogeneic hematopoietic stem cell transplantation (HSCT) in first complete remission (CR1) can improve results, especially in those who achieve negative measurable residual disease (MRD-). More effective treatments than standard 7+3 are needed. CLAG-M is a salvage regimen that has demonstrated high response rates with good tolerance, and seems to be promising in the upfront setting. AIMS To estimate CR and MRD- rates, overall survival (OS) and event free survival (EFS) in transplant eligible patients with high risk AML treated in our center.To compare CR rate and transplant feasibility in CR1 with 7+3 vs. CLAG-M as induction treatment in s-AML. PATIENTS AND METHODS We analyzed adult patients (18-65 years old) with high risk AML (defined by adverse cytogenetic according to ELN2017 or s-AML) who were treated in our institution between 2010 and 2018. All patients were transplant eligible and had an available donor. Clinical information was collected from medical records. We evaluated CR1 and MRD- rates, EFS and OS. We also compared CR rates and HSCT feasibility in s-AML after treatment induction with CLAG-M and 7+3. The survival analysis was estimated with Kaplan-Meier method and the comparison between variables was performed through log-rank test. RESULTS Twenty-one patients were included (13 s-AML and 8 with adverse cytogenetic). The median age at diagnosis was 54 years (21-64); 13 female/8 male. Out of 21 patients, 14 received 7+3 induction and 7 CLAG-M. The median follow-up time was 11 months (0.9-90.8), median EFS and OS for the whole group was 1.05 and 13.5 months, respectively. Two-year OS was 35%. CR1 was achieved in sixteen patients (76%), 10 of them MRD-. The median time to CR1 was 33 days, the median OS of these patients was 26.7 months (figure 1). Eleven patients (52%) were refractory to first induction, 10/14 in the 7+3 subgroup, and only 1/7 patients treated with CLAG-M. Six of them converted to CR after reinduction (5 with CLAG-M). Fourteen (67%) underwent HSCT in CR1. The median time to HSCT consolidation was 106 days. The median relapse free survival in transplanted patients has not been reached (Table 1). Considering only s-AML, 6 patients received 7+3 and 7 CLAG-M. Median age in 7+3 subgroup was 41 vs. 57 years in CLAG-M. The median OS was 13.5 months. In the 7+3 cohort, only 1 achieved CR (16%); the other five received reinduction with CLAG-M, and 4 converted to CR1. The median time to CR1, EFS and OS were 82 days, 1 month and 26 months respectively. In contrast, 4 of the 7 patients (57%) that received CLAG-M achieved CR1, but only 1 of the 3 that were refractory could convert to CR. The median time to CR1 in patients treated with CLAG-M was 27 days, median EFS 7.5 months and median OS has not been reached (Figure 2). There were no statistically significant differences between the two treatment groups. Eight patients (62%) could be bridged to HSCT, 4 of each subgroup (Table 2). CONCLUSIONS Our results in this real life small cohort of high risk AML were similar to historical controls. In the s-AML subgroup, differences between 7+3 and CLAG-M were not statistically significant probably due to the low number of patients analyzed. However, patients who received CLAG-M required less cycles of treatment to achieved CR1, allowing HSCT rapidly in this selected population. Since most of the refractory patients to 7+3 responded to reinduction with CLAG-M, both groups had similar transplant rates. According to our experience CLAG-M might be an attractive treatment option with high CR rates and acceptable safety profile. In this high risk AML population, two thirds of the patients were effectively "bridged" to HSCT with a 2-year OS rate of 35%. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document