scholarly journals First-Line Second Generation Tyrosine Kinase Inhibitors in Newly Diagnosed Accelerated Phase Chronic Myeloid Leukemia Patients.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 48-48 ◽  
Author(s):  
Marie Balsat ◽  
Vincent Alcazer ◽  
Gabriel Etienne ◽  
Gaelle Fossard ◽  
Francoise Huguet ◽  
...  

Abstract Introduction Up to 10% of patients (pts) with chronic myeloid leukemia (CML) are already in accelerated phase (AP) at diagnosis and despite treatment advances in the field of tyrosine kinase inhibitors (TKIs), management of these pts is challenging. This study aims to examine the benefit of second generation BCR-ABL tyrosine kinase inhibitors (TKI2) as first-line treatment for newly diagnosed AP-CML. Methods Pts meeting criteria for AP-CML at diagnosis and treated with first-line TKI2 (i. e. Nilotinib or Dasatinib) were included in this retrospective multicenter observational national study. AP-CML were defined according to the ELN (Baccarani, Blood 2013) as hematological acceleration (HEM-AP, any of the following features: blasts in PB or marrow 15-29%, or blasts+promyelocytes in PB or marrow >30% with blasts <30%, basophils in PB ≥20%, or persistent thrombocytopenia <100×109/L (unrelated to therapy) and/or chromosomal abnormalities in addition to the Ph at diagnosis (ACA-AP). Pts initiated nilotinib at 6-800 mg BID or dasatinib at 100-140 mg QD with further dose adaptations according to toxicities or response. Overall survival (OS), progression-free survival (PFS) and failure-free survival [FFS= progression to blast crisis, death, loss of any previous response (CHR, CCyR, or MMR) discontinuation of TKI2 for toxicity], were analysed since TKI2 initiation in intention-to-treat. Results Sixty-six pts were analysed: 45 males (68%) and 21 females (32%) with a median age at diagnosis of 49 (15-78.5) years. The median follow-up of the cohort was 43.5 (1.7-117) months. We segregated the pts in HEM-AP (n=33) and ACA-AP (n=33) for further analyses. Nine pts with HEM-AP harboured ACA and were analysed in the HEM-AP group. Fusion transcripts were of the Major BCR in 57 pts, 6 pts had atypical BCR-ABL transcripts (2 e19a2, and 1 e1a2 in the HEM-AP group and 2 e19a2 and 1 Ma3 in the ACA-AP group), and 3 transcripts unknown. Not surprisingly, spleen enlargement was significantly greater in the HEM-AP group [10 (5-14.75) vs. 3 (0-10)cm, p=0.014]. PB basophils [median 10 (6-16) vs. 3 (2-5)%, p <0.001], PB blasts [median: 12.05 (7.5-15) vs. 1.5 (0-4)%, p<.001], as well as PB blasts+promyelocytes [median 14 (11-20) vs. 4 (1-7)%, p<.001]. Hemoglobin levels were significantly lower in the HEM-AP group [median 93 (6-113.5) vs 120 (100-134) g/L, p<0.001]. Neither WBC counts, platelets counts, nor BCR-ABL/ABL load differed significantly between the 2 groups. In the ACA-AP group, 10 (30%) pts harbored major route ACA and 23 (70%) pts harbored minor route ACA of whom 3 pts with i(17q) and 1 with 7q abnormalities. In the ACA-AP group, Sokal score was low in 42%, intermediate in 32% and high in 26% of pts (2 pts unknown). Dasatinib was initiated in 19/33 pts (57.5%) in the HEM-AP group and in 8/33 pts (24%) in the ACA-AP group. Treatment responses did not significantly differ between ACA-AP and HEM-AP group, regardless of the TKI2 administered, with 33/33 (100%) vs 31/33 (94%) pts achieving a CHR, 2/33 (6%) pts vs 0/33 (0%) pts achieving a MCyR, 5/33 (15%) pts vs 5/33 (15%) pts achieving CCyR, 9/33 (27%) pts vs 4/33 (12%) pts achieving a MMR respectively. However, 11/33 (33%) HEM-AP vs 22/33 (66%) ACA-AP pts achieved a deep molecular response (p=0.013, Fisher test). Median times to CHR and MMR were not significantly different between ACA-AP group and HEM-AP group with 1.05 vs 1.25 months (p=0.088) for CHR and 6 vs 7 months (p=0.156) for MMR, respectively. Overall, the estimated 7-yr FFS rate was 56.92% (95%CI: 40-81), 7-yr PFS was 83.42% (95% CI: 69.6-100%) and 7-yr OS was 87.14% (95%CI: 73.5-100%) (Figure 1.) with no significant differences between ACA-AP vs HEM-AP pts [7-yr FFS: 57.7 vs. 62%, p=0.739; 7-yr PFS: 84.7% vs. 84%, p=0.185; 7-yr OS: 88.9% vs 86.6%, p=0.132] respectively. There was also no difference in FFS, PFS and OS according to the type of TKI2. The only factors influencing negatively OS were the % of BM blasts (HR=1.17, 95%CI: 1.1-1.28, p<0.001) and the % of BM blasts+promyelocytes (HR=1.14, 95%CI: 1.06-1.22, p<0.001). We identified too few significant factors in univariate analysis to perform a multivariate analysis. Conclusion The initiation of a TKI2 in newly diagnosed AP-CML pts induces excellent response and survival rates, probably superior to that of Imatinib first-line, and counterbalances the negative impact of this advanced disease, particularly in HEM AP subgroup. Disclosures Etienne: Pfizer: Membership on an entity's Board of Directors or advisory committees, Other: Travel, Speakers Bureau; BMS: Membership on an entity's Board of Directors or advisory committees, Other: Travel, Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Incyte: Honoraria, Patents & Royalties, Speakers Bureau. Berger:Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Mahon:Incyte: Speakers Bureau; Pfizer: Speakers Bureau; Novartis: Speakers Bureau; BMS: Speakers Bureau. Rea:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Incyte: Honoraria; Pfizer: Honoraria. Nicolini:BMS: Consultancy, Speakers Bureau; Incyte Biosciences: Consultancy, Speakers Bureau; Sun Pharma Ltd: Consultancy.

2020 ◽  
Vol 7 (2) ◽  
pp. 205-211
Author(s):  
Kaynat Fatima ◽  
Syed Tasleem Raza ◽  
Ale Eba ◽  
Sanchita Srivastava ◽  
Farzana Mahdi

The function of protein kinases is to transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are linked to the initiation and development of human cancer. The recent development of small molecule kinase inhibitors for the treatment of different types of cancer in clinical therapy has proven successful. Significantly, after the G-protein-coupled receptors, protein kinases are the second most active category of drug targets. Imatinib mesylate was the first tyrosine kinase inhibitor (TKI), approved for chronic myeloid leukemia (CML) treatment. Imatinib induces appropriate responses in ~60% of patients; with ~20% discontinuing therapy due to sensitivity, and ~20% developing drug resistance. The introduction of newer TKIs such as, nilotinib, dasatinib, bosutinib, and ponatinib has provided patients with multiple options. Such agents are more active, have specific profiles of side effects and are more likely to reach the necessary milestones. First-line treatment decisions must be focused on CML risk, patient preferences and comorbidities. Given the excellent result, half of the patients eventually fail to seek first-line treatment (due to discomfort or resistance), with many of them needing a third or even further therapy lines. In the present review, we will address the role of tyrosine kinase inhibitors in therapy for chronic myeloid leukemia.


2020 ◽  
Vol 9 (5) ◽  
pp. 1542
Author(s):  
Jee Hyun Kong ◽  
Elliott F. Winton ◽  
Leonard T. Heffner ◽  
Manila Gaddh ◽  
Brittany Hill ◽  
...  

We sought to evaluate the outcomes of chronic phase (CP) chronic myeloid leukemia (CML) in an era where five tyrosine kinase inhibitors (TKIs) are commercially available for the treatment of CML. Records of patients diagnosed with CP CML, treated with TKIs and referred to our center were reviewed. Between January 2005 and April 2016, 206 patients were followed for a median of 48.8 (1.4–190.1) months. A total of 76 (37%) patients received one TKI, 73 (35%) received two TKIs and 57 (28%) were exposed to >3 TKIs (3 TKIs, n = 33; 4 TKIs, n = 17; 5 TKIs, n = 7). Nineteen (9.2%) patients progressed to advanced phases of CML (accelerated phase, n = 6; myeloid blastic phase, n = 4; lymphoid blastic phase, n = 9). One third (n = 69) achieved complete molecular response (CMR) at first-line treatment. An additional 55 patients achieved CMR after second-line treatment. Twenty-five patients (12.1%) attempted TKI discontinuation and 14 (6.8%) stopped TKIs for a median of 6.3 months (range 1–53.4). The 10-year progression-free survival and overall survival (OS) rates were 81% and 87%, respectively. OS after 10-years, based on TKI exposure, was 100% (1 TKI), 82% (2 TKIs), 87% (3 TKIs), 75% (4 TKIs) and 55% (5 TKIs). The best OS was observed in patients tolerating and responding to first line TKI, but multiple TKIs led patients to gain treatment-free remission.


Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4524-4526 ◽  
Author(s):  
Elias Jabbour ◽  
Jorge Cortes ◽  
Aziz Nazha ◽  
Susan O'Brien ◽  
Alfonso Quintas-Cardama ◽  
...  

Abstract To validate the recently reported European Treatment and Outcomes Study (EUTOS) score, we applied it to 465 patients with early chronic phase chronic myeloid leukemia treated with standard-dose imatinib (n = 71), high-dose imatinib (n = 208), or second-generation tyrosine kinase inhibitors (n = 186), and assessed its ability to predict event-free survival (EFS), transformation-free survival (TFS), and overall survival (OS). The median follow-up was 69 months. The overall complete cytogenetic response and major molecular response rates were 92% and 85%, respectively. The 3-year EFS, TFS, and OS rates were 86%, 95%, and 97%, respectively. Of the 465 patients, 427 (92%) were in low EUTOS score category. There was no difference in the major molecular response, TFS, EFS, and OS rates between patients with low and high EUTOS score, overall and within specific therapies. In conclusion, 8% of patients with chronic phase chronic myeloid leukemia treated at our institution are in the high EUTOS score; in this population, the EUTOS score was not predictive for outcome.


Sign in / Sign up

Export Citation Format

Share Document