scholarly journals Quantitative Proteomics in Diffuse Large B-Cell Lymphoma Patients Reveal Novel Overexpressed Proteins and Potentially Druggable Targets in the ABC Subtype

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3967-3967
Author(s):  
Susanne Bram Ednersson ◽  
Mimmie Stern ◽  
Henrik Fagman ◽  
Gunilla Enblad ◽  
Ulf-Henrik Mellqvist ◽  
...  

Background: The cell-of-origin (COO) concept, based on gene expression profiling (GEP), dividing diffuse large B-cell lymphoma (DLBCL) patients into germinal center B cell (GCB) or activated B cell (ABC) subtypes, is a well-established subclassification where ABC patients have an inferior survival. The hallmark the ABC-type is constitutive activation of nuclear factor kappa B (NF-κB), often due to mutations in the B-cell receptor (BCR) signaling pathway. This has been the underlying rationale for adding newer drugs, such as bortezomib, ibrutinib or lenalidomide, to R-CHOP for ABC patients. However, none of these combinations studied in phase III trials have shown any clinical benefit. So, the complexity of ABC DLBCL is probably not only explained by genetic alterations and transcriptional changes as gene expression not necessarily correlate with protein expression, and protein action and dynamics are not caught by genomics-based techniques. Instead, using methods to measure global protein expression and interactions could offer new insights into the ABC subtype and possibly aid in the identification of novel drug targets. Aim: To study possible differences in global protein expression between ABC and GCB DLBCL subtypes using quantitative proteomics. Patients: A total of 213 adult DLBCL patients in western Sweden diagnosed between 1/1 2004 and 31/12 2016, were included. All patients received immunochemotherapy (R-CHOP). Primary mediastinal large B-cell lymphoma, primary CNS lymphoma, HIV-related lymphoma and transformed lymphoma were excluded. From archived formalin-fixed, paraffin-embedded (FFPE) tissue sections, from the time of diagnosis, a core biopsy (1 mm diameter) were obtained from each patient sample. Methods: COO was determined using the Hans immunohistochemistry algorithm. For 92 of the 213 patients, COO was also determined using the gene expression Lymph2cx chip: 14% changed subtype group from either non-GCB to GCB (n=8), GCB to ABC (n=4) or GCB to unclassified (n=1). From the FFPE samples a proteomic analysis was performed. In short, peptides were labelled using tandem mass tag (TMT) according to the manufacturer instructions and samples were analysed on an Orbitrap Fusion Tribrid mass spectrometer. The data files were merged for identification and relative quantification using Proteome Discoverer version 1.4.The search used the Human Swissprot Database version August 2016 using Mascot 2.3 as a search engine. The differentially expressed proteins were analysed using STRING version 10.0, for pathway analysis we used the Reactome database resource, and for potentially druggable proteins we used the Human Protein Atlas website which holds protein information of the current FDA approved drugs directed to 672 separate human proteins. Results: In all, 3078 proteins could be identified in all patients and 793 proteins were differentially expressed (p<0.05 adjusted for mass significance according to Benjamin-Hochberg) between ABC and GCB patients. Of these, 410 proteins were overexpressed in the ABC group. Among the most expressed proteins were several well-known ABC-associated proteins (such as IRF4/MUM1, HSP90B1, CCDC50 and STAT3) in addition to a large number of proteins previously not described in ABC DLBCL, e.g. neudesin, BLNK, MPST, BPGM, SUB1, SP140, PCK2, PARP4, SRP54, SRP68, SRP72, TRPV2, IGF2R and FGD2. A majority of the 410 proteins were closely linked with an enrichment p-value < 1x10-16(Fig. 1) and the most enriched pathways were immune system (FDR rate 3.3 x 10-27), interferon signaling (2.9 x 10-7), antigen processing (8.8 x 10-7) and down-modulation of cell surface receptors (4.7 x 10-5). Most interestingly, we also found that 16 proteins overexpressed in the ABC group could be potential drug targets for an FDA approved drug, e.g. high affinity immunoglobulin gamma Fc receptor I, CD47, HDAC2, ELANE and carbonic anhydrase 1. Conclusions: In this large proteomic study we found a number of overexpressed proteins in the ABC subtype, previously not described in DLBCL. Even though functional studies aimed at individual proteins and protein interactions to evaluate potential clinical effect are needed, our findings reveal novel proteins that could be potential druggable targets in ABC DLBCL patients. Figure 1 Disclosures Enblad: Kite/Gilead: Membership on an entity's Board of Directors or advisory committees. Mellqvist:Amgen, Janssen, Oncopeptides, Sanofi, Sandoz, Takeda: Honoraria. Andersson:Abbvie and Janssen: Membership on an entity's Board of Directors or advisory committees; Gilead, Janssen and Roche: Consultancy; Gilead: Research Funding.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Selin Merdan ◽  
Kritika Subramanian ◽  
Turgay Ayer ◽  
Johan Van Weyenbergh ◽  
Andres Chang ◽  
...  

AbstractThe clinical risk stratification of diffuse large B-cell lymphoma (DLBCL) relies on the International Prognostic Index (IPI) for the identification of high-risk disease. Recent studies suggest that the immune microenvironment plays a role in treatment response prediction and survival in DLBCL. This study developed a risk prediction model and evaluated the model’s biological implications in association with the estimated profiles of immune infiltration. Gene-expression profiling of 718 patients with DLBCL was done, for which RNA sequencing data and clinical covariates were obtained from Reddy et al. (2017). Using unsupervised and supervised machine learning methods to identify survival-associated gene signatures, a multivariable model of survival was constructed. Tumor-infiltrating immune cell compositions were enumerated using CIBERSORT deconvolution analysis. A four gene-signature-based score was developed that separated patients into high- and low-risk groups. The combination of the gene-expression-based score with the IPI improved the discrimination on the validation and complete sets. The gene signatures were successfully validated with the deconvolution output. Correlating the deconvolution findings with the gene signatures and risk score, CD8+ T-cells and naïve CD4+ T-cells were associated with favorable prognosis. By analyzing the gene-expression data with a systematic approach, a risk prediction model that outperforms the existing risk assessment methods was developed and validated.


2012 ◽  
Vol 30 (28) ◽  
pp. 3452-3459 ◽  
Author(s):  
Nathalie A. Johnson ◽  
Graham W. Slack ◽  
Kerry J. Savage ◽  
Joseph M. Connors ◽  
Susana Ben-Neriah ◽  
...  

Purpose Diffuse large B-cell lymphoma (DLBCL) is curable in 60% of patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). MYC translocations, with or without BCL2 translocations, have been associated with inferior survival in DLBCL. We investigated whether expression of MYC protein, with or without BCL2 protein expression, could risk-stratify patients at diagnosis. Patients and Methods We determined the correlation between presence of MYC and BCL2 proteins by immunohistochemistry (IHC) with survival in two independent cohorts of patients with DLBCL treated with R-CHOP. We further determined if MYC protein expression correlated with high MYC mRNA and/or presence of MYC translocation. Results In the training cohort (n = 167), MYC and BCL2 proteins were detected in 29% and 44% of patients, respectively. Concurrent expression (MYC positive/BCL2 positive) was present in 21% of patients. MYC protein correlated with presence of high MYC mRNA and MYC translocation (both P < .001), but the latter was less frequent (both 11%). MYC protein expression was only associated with inferior overall and progression-free survival when BCL2 protein was coexpressed (P < .001). Importantly, the poor prognostic effect of MYC positive/BCL2 positive was validated in an independent cohort of 140 patients with DLBCL and remained significant (P < .05) after adjusting for presence of high-risk features in a multivariable model that included elevated international prognostic index score, activated B-cell molecular subtype, and presence of concurrent MYC and BCL2 translocations. Conclusion Assessment of MYC and BCL2 expression by IHC represents a robust, rapid, and inexpensive approach to risk-stratify patients with DLBCL at diagnosis.


Sign in / Sign up

Export Citation Format

Share Document