scholarly journals Factor VIII–antibody structure and membrane binding

Blood ◽  
2021 ◽  
Vol 137 (21) ◽  
pp. 2866-2868
Author(s):  
Gary E. Gilbert
2011 ◽  
Vol 435 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Valerie A. Novakovic ◽  
David B. Cullinan ◽  
Hironao Wakabayashi ◽  
Philip J. Fay ◽  
James D. Baleja ◽  
...  

Factor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa–Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain. In the present study, we prepared an fVIII-C2 (Factor VIII C2 domain) construct from Escherichia coli, and confirmed its structural integrity through binding of three distinct monoclonal antibodies. Solution-phase assays, performed with flow cytometry and FRET (fluorescence resonance energy transfer), revealed that fVIII-C2 membrane affinity was approx. 40-fold lower than intact Factor VIII. In contrast with the similarly structured C2 domain of lactadherin, fVIII-C2 membrane binding was inhibited by physiological NaCl. fVIII-C2 binding was also not specific for phosphatidylserine over other negatively charged phospholipids, whereas a Factor VIII construct lacking the C2 domain retained phosphatidyl-L-serine specificity. fVIII-C2 slightly enhanced the cleavage of Factor X by Factor IXa, but did not compete with Factor VIII for membrane-binding sites or inhibit the Factor Xase complex. Our results indicate that the C2 domain in isolation does not recapitulate the characteristic membrane binding of Factor VIII, emphasizing that its role is co-operative with other domains of the intact Factor VIII molecule.


2014 ◽  
Vol 461 (3) ◽  
pp. 443-451 ◽  
Author(s):  
Dionysios Pantazatos ◽  
Christopher R. Gessner ◽  
Virgil L. Woods ◽  
Gary E. Gilbert

Blood coagulation Factor VIII binds to a membrane in order to function as a cofactor for Factor IXa, preventing haemophilia. The present study indicates that membrane-binding peptides of Factor VIII are largely protected from water exposure, indicating that they become immersed in the membrane.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 848-848
Author(s):  
Junhong Lu ◽  
Steven W. Pipe ◽  
Hongzhi Miao ◽  
Marc Jacquemin ◽  
Gary E. Gilbert

Abstract Abstract 848 Background: Factor VIII functions as a cofactor in blood coagulation. When released from a non-covalent complex with von Willebrand factor (vWf), activated factor VIII assembles with factor IXa on phosphatidylserine (PS)-containing membranes to form the factor Xase complex. Binding to PS-containing membranes amplifies the activation of factor X by several orders of magnitude. Factor VIII is composed of three A domains, one B domain and two C domains (C1 and C2). The role of C2 domain, including the orientation with respect to membrane surface, vWf-binding motif, and protein-protein contact sites among Xase complex, are relatively well-documented. Recently, the position of the C domains in the factor VIII crystal structure suggested a possible role for the C1 domain in membrane binding. We recently confirmed the participation of K2092 and F2093 of the factor VIII C1 domain in membrane binding (Meems et al. Blood 2009 First edition Aug 18). This work explores the participation of additional C1 domain amino acids and the way the corresponding motif(s) cooperate with motifs of the C2 domain for membrane binding. Methods: Four factor VIII C1 domain mutants encompassing the lower surface of the C1 domain (Arg2090/GLy2091, Lys 2092/Phe2093, Gln2042/Tyr2043, and Arg2159) had individual or paired amino acids mutated to alanine. Mutants were produced in COS-1 cells and purified by immunoaffinity chromatography. The specific activities of these mutants were assessed in a commercial PTT assay as well as phospholipid-limiting and phospholipid-saturating factor Xase assay. Their affinities to factor IXa and factor X were measured by titration experiments using different concentrations of factor IXa and factor X, respectively. Binding to plasma vWf was evaluated in a competition, solution phase enzyme-linked immunosorbent assay (ELISA). The cooperative role of C1 and C2 domains in membrane-binding for cofactor activity was carried out using C1 mutants and antibodies against established membrane-interactive C2 domain motifs, ESH4 and BO2C11. Results: In a competition ELISA for vWf, the affinity of Arg2159 was reduced more than 50-fold, while the other mutants were normal. All mutants had reduced specific activity (range 24-61% of wild type) in a commercial PTT assay containing excess phospholipid. All mutants had decreased apparent affinity for vesicles with limiting (4%) PS by 33, 5, 20, and 18-fold for Arg2090/GLy2091, Gln2042/Tyr2043, Arg2159, and Lys 2092/Phe20933, respectively. However, addition of excess vesicles led to near normal activity for Arg2159. Mutants Arg2090/GLy2091 and Gln2042/Tyr2043 both had 4-fold decreased apparent affinity for factor X and 77% and 84% reduction in Vmax even when phospholipid and factor X were in excess. Mutant Lys 2092/Phe2093 had normal apparent affinity for factor IXa and factor X but > 91% reduction in Vmax. These results indicate that the C1 domain affects interaction with factor X and the Vmax of the factor Xase complex aside from the effect on membrane affinity. To further explore the role of membrane-binding motif in the Xase complex, the activities of mutants were tested with the C2 domain membrane-interactive epitopes blocked by mAb's BO2C11 or ESH4. For WT factor VIII, ESH4 and B02C11 decreased apparent affinity for vesicles of 15% PS by 6-fold and 5-fold, and decreased the Vmax by 0 and 89%, respectively. BO2C11 completely inhibited the activity of Arg2090/GLy2091, Lys 2092/Phe2093, and Arg2159 while ESH4 decreased apparent affinity 2-7-fold for the three mutants. ESH4 decreased the Vmax by 2-5-fold for the mutants. Thus, the intact membrane-binding motif in C1 can independently support Xase activity although the C1 motifs and both C2 membrane-interactive epitopes are required for full activity. Conclusion: Amino acids Arg2090/GLy2091, Lys2092/Phe2093 , Gln2042/Tyr2043, and Arg2159 of the factor VIII C1 domain participate in membrane binding. Our data suggest that engagement of the C1 domain through these residues, together with the ESH4 and the BO2C11 epitopes of the C2 domain, cooperatively influence alignment or an allosteric effect that alters activity for the assembled factor Xase complex. Disclosures: Pipe: Baxter: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novo Nordisk: Membership on an entity's Board of Directors or advisory committees; Wyeth: Speakers Bureau; Inspiration Biopharmaceuticals: Research Funding; CSL Behring: Honoraria.


Author(s):  
Lydia Castro-Núñez ◽  
Johanna M. Koornneef ◽  
Mariska G. Rondaij ◽  
Esther Bloem ◽  
Carmen van der Zwaan ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 587-587
Author(s):  
Henriet Meems ◽  
Alexander B Meijer ◽  
Dave Cullinan ◽  
Koen Mertens ◽  
Gary E. Gilbert

Abstract Background: Activated factor VIII (FVIIIa) assembles with factor IXa (FIXa) on the membranes of activated platelets and on synthetic phosphatidylserine(PS)-containing membranes. This membrane-bound complex catalyses the conversion of the zymogen, factor X, to factor Xa. Established membrane-binding amino acids of FVIII are in the C2 domain. However, the C2 domain alone binds with a lower affinity to membranes than intact FVIII or the FVIII light chain, suggesting a role of the A3 and/or C1 domains in membrane binding. Moreover, a possible role for the C1 domain in platelet binding has been recently reported. The position of the C domains in the FVIII crystal structure suggests a possible role for residues from surface loop K2092-S2094 of the C1 domain in membrane binding. The present study addresses the role of this loop in membrane binding. Methods: The role of the C1 surface loop K2092-S2094 was assessed by competition studies using KM33. This is a scFv fragment cloned from the antibody repertoire of a hemophilia A patient, with an epitope that comprises residues 2092–2094. In addition, FVIII mutants incorporating yellow fluorescent protein in place of the B domain and with K2092/F2093 changed to alanine (FVIIIYFP and FVIIIYFP K2092A/F2093A) were expressed and purified. Binding of recombinant FVIII labelled with fluorescein-maleimide (FVIIIfl), FVIIIYFP and FVIIIYFP K2092A/F2093A to phospholipid membranes (4% or 15% PS/20% PE/PC as balance) supported by glass microspheres and purified platelets was measured by flow cytometry. Lower affinity, non-equilibrium binding of sonicated vesicles to immobilized factor VIII was measured in a microtiter plate assay. The cofactor function of FVIII was measured in a factor Xase assay with limiting phospholipid. Results: KM33 inhibited >95% of FVIII binding to phospholipid membranes containing 15% PS, indicating that the C1 domain epitope is important for membrane binding. The affinity of FVIIIYFP K2092A/F2093A for the same membranes was reduced 3-fold compared with FVIIIYFP (Kd’s of 91 ± 6 vs. 31 ± 2 nM). KM33 decreased the overall activity for the factor Xase complex by 95% on vesicles with 15% PS and >99% on vesicles with 4% PS. The implied membrane affinity for FVIIIYFP K2092A/F2093A in the factor Xase complex was decreased 3-fold for vesicles with 15% PS but the Vmax was equivalent to FVIIIYFP. The implied affinity of FVIIIYFP K2092A/F2093A was reduced approximately 40-fold for vesicles with 4% PS confirming the importance of the C1 domain epitope for full factor VIII function. In the microtiter assay, mAb BO2C11, against the C2 domain, blocked approx. 80% of binding to vesicles containing 15% PS, KM33 blocked 5% of binding and both antibodies together blocked ~95% of binding. Binding to 4% PS vesicles was inhibited 70% by KM33 alone and B02C11 alone blocked all binding. Thus, the two membrane-binding motifs are required for detectable binding to membranes with 4% PS but can independently support some binding to membranes with 15% PS. KM33 inhibited approx 90% of FVIII binding to platelets. The binding of FVIIIYFP K2092A/F2093A to platelets stimulated with calcium ionophore A23187 was reduced 50% compared to FVIIIYFP; however binding to platelets stimulated with thrombin receptor activating peptide (TRAP) was comparable to FVIIIYFP. The cofactor function of FVIIIYFP K2092A/F2093A was reduced approximately 80% on platelets stimulated with either TRAP or A23187. Conclusion: The present study demonstrates that the FVIII C1 domain contributes to membrane binding and residues K2092 and/or F2093 participate in this interaction. The relative importance of these residues for membrane binding is dependent on the amount of PS present in synthetic membranes. On platelets K2092 and/or F2093 are necessary for full cofactor function of FVIII.


Blood ◽  
2009 ◽  
Vol 114 (18) ◽  
pp. 3938-3946 ◽  
Author(s):  
Henriët Meems ◽  
Alexander B. Meijer ◽  
David B. Cullinan ◽  
Koen Mertens ◽  
Gary E. Gilbert

AbstractBinding of factor VIII to membranes containing phosphatidyl-L-serine (Ptd-L-Ser) is mediated, in part, by a motif localized to the C2 domain. We evaluated a putative membrane-binding role of the C1 domain using an anti-C1 antibody fragment, KM33scFv, and factor VIII mutants with an altered KM33 epitope. We prepared a dual mutant Lys2092/Phe2093 → Ala/Ala (fVIIIYFP 2092/93) and 2 single mutants Lys2092 → Ala and Phe2093 → Ala. KM33scFv inhibited binding of fluorescein-labeled factor VIII to synthetic membranes and inhibited at least 95% of factor Xase activity. fVIIIYFP 2092/93 had 3-fold lower affinity for membranes containing 15% Ptd-L-Ser but more than 10-fold reduction in affinity for membranes with 4% Ptd-L-Ser. In a microtiter plate, KM33scFv was additive with an anti-C2 antibody for blocking binding to vesicles of 15% Ptd-L-Ser, whereas either antibody blocked binding to vesicles of 4% Ptd-L-Ser. KM33scFv inhibited binding to platelets and fVIIIYFP 2092/93 had reduced binding to A23187-stimulated platelets. fVIIIYFP 2092 exhibited normal activity at various Ptd-L-Ser concentrations, whereas fVIIIYFP 2093 showed a reduction of activity with Ptd-L-Ser less than 12%. fVIIIYFP 2092/93 had a greater reduction of activity than either single mutant. These results indicate that Lys 2092 and Phe 2093 are elements of a membrane-binding motif on the factor VIII C1 domain.


Blood ◽  
2011 ◽  
Vol 117 (11) ◽  
pp. 3181-3189 ◽  
Author(s):  
Junhong Lü ◽  
Steven W. Pipe ◽  
Hongzhi Miao ◽  
Marc Jacquemin ◽  
Gary E. Gilbert

Abstract Factor VIII binds to phosphatidylserine (PS)-containing membranes through its tandem, lectin-homology, C1 and C2 domains. However, the details of C1 domain membrane binding have not been delineated. We prepared 4 factor VIII C1 mutations localized to a hypothesized membrane-interactive surface (Arg2090Ala/Gln2091Ala, Lys2092Ala/Phe2093Ala, Gln2042Ala/Tyr2043Ala, and Arg2159Ala). Membrane binding and cofactor activity were measured using membranes with 15% PS, mimicking platelets stimulated by thrombin plus collagen, and 4% PS, mimicking platelets stimulated by thrombin. All mutants had at least 10-fold reduced affinities for membranes of 4% PS, and 3 mutants also had decreased apparent affinity for factor X. Monoclonal antibodies against the C2 domain produced different relative impairment of mutants compared with wild-type factor VIII. Monoclonal antibody ESH4 decreased the Vmax for all mutants but only the apparent membrane affinity for wild-type factor VIII. Monoclonal antibody BO2C11 decreased the Vmax of wild-type factor VIII by 90% but decreased the activity of 3 mutants more than 98%. These results identify a membrane-binding face of the factor VIII C1 domain, indicate an influence of the C1 domain on factor VIII binding to factor X, and indicate that cooperation between the C1 and C2 domains is necessary for full activity of the factor Xase complex.


Sign in / Sign up

Export Citation Format

Share Document