Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336

Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 1068-1071 ◽  
Author(s):  
Russell R. Hoover ◽  
Francois-Xavier Mahon ◽  
Junia V. Melo ◽  
George Q. Daley

Abstract The development of chronic myeloid leukemia (CML) is dependent on the deregulated tyrosine kinase of the oncoprotein BCR-ABL. STI571 (imatinib mesylate), an abl tyrosine kinase inhibitor, has proven remarkably effective for the treatment of CML. However, resistance to STI571 because of enhanced expression or mutation of theBCR-ABL gene has been detected in patients. In the current study we show that the farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits the proliferation of STI571-resistant BCR-ABL–positive cell lines and hematopoietic colony formation from peripheral blood samples of STI571-resistant patients with CML. Moreover, SCH66336 enhances STI571-induced apoptosis in STI571-sensitive cells and, in patients with STI571 resistance from gene amplification, cooperates with STI571 to induce apoptosis. Our data provide a rationale for combination clinical trials of STI571 and SCH66336 in CML patients and suggest that combination therapy may be effective in patients with STI571 resistance.

2016 ◽  
Vol 38 (3) ◽  
pp. 195-197 ◽  
Author(s):  
S V Andreieva ◽  
K V Korets ◽  
O A Kyselova ◽  
O E Ruzhinska ◽  
I M Serbin

Aim: Genetic inborn along with acquired diseases arise due to the lesions in genome of multipotent hematopoietic stem cells. The aim was to study an influence of constitutional anomaly, Klinefelter syndrome, and additional structural rearrangements on the BCR-ABL tyrosine kinase inhibitor targeted therapy efficacy. Material and Methods: We describe a 32-year-old male patient with chronic myeloid leukemia (CML) who was detected to have sex chromosomal abnormality during evaluation for Philadelphia chromosome. Results: At diagnosis of CML, two clones were detected by standard cytogenetic investigation of bone marrow cells: 1) clone with translocation t(9;22)(q34;q11), with two sex X chromosomes and absence sex chromosome Y; 2) clone with t(9;22) and unbalanced t(Y;20)(q11;q13). Analysis of blast transformed lymphocytes from peripheral blood showed karyotype 47,XXY. Monitoring of targeted therapy with second generation inhibitor of BCR-ABL tyrosine kinase indicated a cytogenetic remission and absence of BCR-ABL1 fusion signals after 11 months. Conclusions: Absence of translocation t(9;22)(q34;q11) in blast transformed T-lymphocytes at diagnosis of CML evidences that this translocation may appear not only at the level of multipotent haemopoietic cell progenitors but also may have oligo lineage myeloid origin. Presence of additional structural chromosomal abnormality in the clone with t(9;22)(q34;q11) does not affect the efficacy of therapy with the use of second generation BCR-ABL tyrosine kinase inhibitor.


TH Open ◽  
2018 ◽  
Vol 02 (01) ◽  
pp. e68-e88 ◽  
Author(s):  
Hélène Haguet ◽  
Jonathan Douxfils ◽  
Christian Chatelain ◽  
Carlos Graux ◽  
François Mullier ◽  
...  

AbstractImatinib, the first-in-class BCR-ABL tyrosine kinase inhibitor (TKI), had been a revolution for the treatment of chronic myeloid leukemia (CML) and had greatly enhanced patient survival. Second- (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKIs have been developed to be effective against BCR-ABL mutations making imatinib less effective. However, these treatments have been associated with arterial occlusive events. This review gathers clinical data and experiments about the pathophysiology of these arterial occlusive events with BCR-ABL TKIs. Imatinib is associated with very low rates of thrombosis, suggesting a potentially protecting cardiovascular effect of this treatment in patients with BCR-ABL CML. This protective effect might be mediated by decreased platelet secretion and activation, decreased leukocyte recruitment, and anti-inflammatory or antifibrotic effects. Clinical data have guided mechanistic studies toward alteration of platelet functions and atherosclerosis development, which might be secondary to metabolism impairment. Dasatinib, nilotinib, and ponatinib affect endothelial cells and might induce atherogenesis through increased vascular permeability. Nilotinib also impairs platelet functions and induces hyperglycemia and dyslipidemia that might contribute to atherosclerosis development. Description of the pathophysiology of arterial thrombotic events is necessary to implement risk minimization strategies.


Hematology ◽  
2012 ◽  
Vol 2012 (1) ◽  
pp. 122-128 ◽  
Author(s):  
François-Xavier Mahon

Abstract After more than a decade of treatment of chronic myeloid leukemia (CML) patients with the BCR-ABL tyrosine kinase inhibitor imatinib, and despite the impressive clinical results of this targeted therapeutic, many questions remain unresolved. One major question is how to cure CML, and the next step for the future will be to address this key issue. CML is a good model of cancer. The fact that the majority of CML patients who respond very well but discontinue tyrosine kinase inhibitors later show evidence of molecular recurrence focuses attention on the need for further research on leukemic stem cells. The challenge now is to understand why, after stopping treatment, the leukemia recurs in some patients but not in others. If we win this battle, this progress will certainly benefit the treatment and management of other leukemias and solid tumors and will validate this new topic.


2016 ◽  
Vol 23 (9) ◽  
pp. 2289-2300 ◽  
Author(s):  
Isabel Ben-Batalla ◽  
Robert Erdmann ◽  
Heather Jørgensen ◽  
Rebecca Mitchell ◽  
Thomas Ernst ◽  
...  

Blood ◽  
2000 ◽  
Vol 96 (9) ◽  
pp. 3195-3199 ◽  
Author(s):  
J. Tyler Thiesing ◽  
Sayuri Ohno-Jones ◽  
Kathryn S. Kolibaba ◽  
Brian J. Druker

Abstract Chronic myelogenous leukemia (CML), a malignancy of a hematopoietic stem cell, is caused by the Bcr-Abl tyrosine kinase. STI571(formerly CGP 57148B), an Abl tyrosine kinase inhibitor, has specific in vitro antileukemic activity against Bcr-Abl–positive cells and is currently in Phase II clinical trials. As it is likely that resistance to a single agent would be observed, combinations of STI571 with other antileukemic agents have been evaluated for activity against Bcr-Abl–positive cell lines and in colony-forming assays in vitro. The specific antileukemic agents tested included several agents currently used for the treatment of CML: interferon-alpha (IFN), hydroxyurea (HU), daunorubicin (DNR), and cytosine arabinoside (Ara-C). In proliferation assays that use Bcr-Abl–expressing cells lines, the combination of STI571 with IFN, DNR, and Ara-C showed additive or synergistic effects, whereas the combination of STI571 and HU demonstrated antagonistic effects. However, in colony-forming assays that use CML patient samples, all combinations showed increased antiproliferative effects as compared with STI571 alone. These data indicate that combinations of STI571 with IFN, DNR, or Ara-C may be more useful than STI571 alone in the treatment of CML and suggest consideration of clinical trials of these combinations.


Sign in / Sign up

Export Citation Format

Share Document