farnesyl transferase inhibitor
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 8)

H-INDEX

30
(FIVE YEARS 1)

Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5310
Author(s):  
Linda Kessler ◽  
Shivani Malik ◽  
Mollie Leoni ◽  
Francis Burrows

Current therapies for recurrent and metastatic SCC are associated with poor outcomes, and options for later lines of treatment are limited. Insights into potential therapeutic targets, as well as mechanisms of resistance to available therapies, have begun to be elucidated, creating the basis for exploration of combination approaches to drive better patient outcomes. Tipifarnib, a farnesyl transferase inhibitor (FTI), is a small molecule drug that has demonstrated encouraging clinical activity in a genetically-defined subset of head and neck squamous cell carcinoma (HNSCC)–specifically, tumors that express a mutation in the HRAS protooncogene. More recently, bioinformatic analyses and results from patient-derived xenograft modeling indicate that HRAS pathway dependency may extend to a broader subpopulation of SCCs beyond HRAS mutants in the context of combination with agents such as cisplatin, cetuximab, or alpelisib. In addition, tipifarnib can also inactivate additional farnesylated proteins implicated in resistance to approved therapies, including immunotherapies, through a variety of distinct mechanisms, suggesting that tipifarnib could serve as an anchor for combination regimens in SCCs and other tumor types.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Vandana Mallaredy

Clinically, Hypertrophic cardiomyopathy (HCM) in response to pathophysiological stress is one of the major initiating factors for the onset of cardiac remodeling leading to heart failure. Studies have revealed that HCM characterized by left ventricular hypertrophy, hypercontractility, and impaired relaxation is mainly driven by an intricate crosstalk among the multiple cellular and molecular mechanisms, which leads to heart failure. In agreement with this observation, we investigated if the Tipifarnib-mediated reduction/alteration of circulating exosomes mediates cardiac cell communication during HCM. Several studies have shown Tipifarnib as a potential Farnesyl transferase inhibitor. However, in recent past Tipifarnib has been shown to target exosomes biogenesis by several mechanisms such as inhibiting Ras pathway, ESCRT complex etc. Tipifarnib treatment in mice significantly reduced the number of circulating plasma exosomes. We examined the response of Tipifarnib treatment (10 mg/kg body weight) in C57BL6J male mice subjected to transverse aortic constriction (TAC) surgery. Untreated TAC mice had worsening of systolic Left Ventricular function at 4 weeks that further deteriorated at 8 weeks, while the treatment with Tipifarnib substantially improved cardiac functions by reducing cardiac hypertrophy and fibrosis. Exosomes isolated from the serum of sham and TAC mice with or without tipifarnib were used for in vitro cell based analyses. We observed that the exosomes isolated from Tipifarnib treated TAC mice reduced isoproterenol (ISO)-induced cardiomyoblast hypertrophy and fibrosis-associated genes in adult cardiac fibroblasts. Taken together, our studies suggest Tipifarnib protects against pressure overload induced cardiac remodeling and dysfunction by altering hypertrophic and fibrotic gene expression, by potentially reducing circulating exosomes or by altering exosome contents. Ongoing studies will clarify the molecular mechanisms of these observations.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
So-mi Kang ◽  
Min-Ho Yoon ◽  
Jinsook Ahn ◽  
Ji-Eun Kim ◽  
So Young Kim ◽  
...  

AbstractPrevious work has revealed that progerin-lamin A binding inhibitor (JH4) can ameliorate pathological features of Hutchinson-Gilford progeria syndrome (HGPS) such as nuclear deformation, growth suppression in patient’s cells, and very short life span in an in vivo mouse model. Despite its favorable effects, JH4 is rapidly eliminated in in vivo pharmacokinetic (PK) analysis. Thus, we improved its property through chemical modification and obtained an optimized drug candidate, Progerinin (SLC-D011). This chemical can extend the life span of LmnaG609G/G609G mouse for about 10 weeks and increase its body weight. Progerinin can also extend the life span of LmnaG609G/+ mouse for about 14 weeks via oral administration, whereas treatment with lonafarnib (farnesyl-transferase inhibitor) can only extend the life span of LmnaG609G/+ mouse for about two weeks. In addition, progerinin can induce histological and physiological improvement in LmnaG609G/+ mouse. These results indicate that progerinin is a strong drug candidate for HGPS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Chen ◽  
Chengyun Cai ◽  
Lifeng Wang ◽  
Shixin Li ◽  
Ling Chen

Inhibition of Ras farnesylation in acute has been found to upregulate the α7 nicotinic acetylcholine receptor (α7nAChR) activity. This study was carried out to investigate the effect of chronic administration for 7 days of farnesyl transferase inhibitor lonafarnib (50 mg/kg, intraperitoneally injected) to male mice on the expression and activity of α7nAChR in hippocampal CA1 pyramidal cells. Herein, we show that lonafarnib dose dependently enhances the amplitude of ACh-evoked inward currents (IACh), owning to the increased α7nAChR expression and membrane trafficking. Lonafarnib inhibited phosphorylation of c-Jun and JNK, which was related to DNA methylation. In addition, reduced DNA methyltransferase 1 (DNMT1) expression was observed in lonafarnib-treated mice, which was reversed by JNK activator. Lonafarnib-upregulated expression of α7nAChR was mimicked by DNMT inhibitor, and repressed by JNK activator. However, only inhibited DNA methylation did not affect IACh, and the JNK activator partially decreased the lonafarnib-upregulated IACh. On the other hand, lonafarnib also increased the membrane expression of α7nAChR, which was partially inhibited by JNK activator or CaMKII inhibitor, without changes in the α7nAChR phosphorylation. CaMKII inhibitor had no effect on the expression of α7nAChR. Lonafarnib-enhanced spatial memory of mice was also partially blocked by JNK activator or CaMKII inhibitor. These results suggest that Ras inhibition increases α7nAChR expression through depressed DNA methylation of CHRNA7 via Ras-c-Jun-JNK pathway, increases the membrane expression of α7nAChR resulting in part from the enhanced CaMKII pathway and total expression of this receptor, and consequently enhances the spatial memory.


ChemBioChem ◽  
2019 ◽  
Vol 20 (11) ◽  
pp. 1387-1393 ◽  
Author(s):  
Kevin C. Santa Maria ◽  
Andrew N. Chan ◽  
Erinn M. O'Neill ◽  
Bo Li

2018 ◽  
Author(s):  
Israel Hernandez ◽  
Gabriel Luna ◽  
Jennifer N Rauch ◽  
Michel Giroux ◽  
Celeste M Karch ◽  
...  

Tau inclusions are a shared feature of many neurodegenerative conditions and tau mutations lead to frontotemporal dementia. Approaches to treatment of these conditions have focused directly on the tau protein by targeting its post-translational modifications, its levels and its tendency to aggregate. We discovered a novel regulatory pathway for tau degradation that operates through the Rhes protein, a GTPase. Rhes is farnesylated and treatment with the farnesyl transferase inhibitor, lonafarnib, reduced Rhes, attenuated behavioral abnormalities, significantly reduced atrophy, tau inclusions, sumoylation and ubiquitination, as well as microgliosis in the rTg4510 tauopathy mouse. Direct reduction of Rhes levels reproduced the results observed with lonafarnib. The mechanism of lonafarnib action, as mediated by Rhes to reduce tau pathology, operates through the lysosome without involvement of the proteasome. Finally we show that the developmental increase in Rhes levels can be homeostatically regulated in the presence of tau mutations as a protective mechanism through which cells sense abnormal tau before any pathology is present. The extensive human trials of lonafarnib for other conditions, makes this drug ideal for repurposing to treat tauopathies.


2018 ◽  
Vol 29 (3) ◽  
Author(s):  
Feng Gao ◽  
Zhaoying Fu ◽  
Weipeng Liu ◽  
Xiaoxiao Han ◽  
Shutong Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document