Persistence of eGFP Marked Bone Marrow Cells in Long-Term Hematopoiesis.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2111-2111
Author(s):  
Ingo H. Pilz ◽  
Manfred Schmidt ◽  
Claudia Ball ◽  
Hanno Glimm ◽  
Fritz von Weizsäcker ◽  
...  

Abstract To study transplanted unperturbed and mobilized long-term hematopoiesis after selection with an alkylating agent, bone marrow (BM) from 5 C57BL/6J mice was pooled, repeatedly transduced with retroviruses encoding the alkylating agent resistance protein O6-Methylguanine-DNA and enhanced green fluorescent protein (eGFP) as an easily traceable marker. Between 1 to 9x105 transfected BM cells were transplanted into 15 myeloablatively irradiated sex-mismatched C57BL/6J mice. Subsequently, 3 to 4 selection rounds with BCNU/O6-BG were carried out, enriching eGFP marked hematopoiesis in these mice up to 70–90%. Between 1 and 7x107BM cells of different mice were transplanted according to marrow location into groups of 5 sex-matched Bri44[1] mice. Two mice each received BM from the hind limbs, two from the pelvis and one received cells from the spleen, only, respectively. Altogether the study comprised 15 groups divided into 6 female and 9 male groups. Of these, 4 male and 3 female groups received 3 HSC-mobilization courses with G-CSF at intervals of 2 months starting 3 month after transplantation. Hematopoiesis in the other fraction remained unperturbed. During the observation period of 11–14 months in these tertiary recipients, repeated FACS analyses as well as linear amplification mediated (LAM) PCRs were carried out to track the clonal contributions. A decrease in the percentage of eGFP expressing marked hematopoiesis was observed in most cases. However, eGFP expression never disappeared altogether and could still be detected in the different hematopoietic lineages and successfully sorted for further analyses by MoFlo (Dako-Cytomation). Assessment of the clonal status of the Bri44 by LAM-PCR displayed interesting results. In some mice a decline in clone numbers was observed, whereas clone numbers remained stable in others. Tertiary transplantation with long-term follow-up indicates that this observation may be related to the transplantation of limited long-term repopulating clone numbers and progenitor cell exhaustion over time.

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3304-3315 ◽  
Author(s):  
Marti F.A. Bierhuizen ◽  
Yvonne Westerman ◽  
Trudi P. Visser ◽  
Wati Dimjati ◽  
Albertus W. Wognum ◽  
...  

Abstract The further improvement of gene transfer into hematopoietic stem cells and their direct progeny will be greatly facilitated by markers that allow rapid detection and efficient selection of successfully transduced cells. For this purpose, a retroviral vector was designed and tested encoding a recombinant version of the Aequorea victoria green fluorescent protein that is enhanced for high-level expression in mammalian cells (EGFP). Murine cell lines (NIH 3T3, Rat2) and bone marrow cells transduced with this retroviral vector demonstrated a stable green fluorescence signal readily detectable by flow cytometry. Functional analysis of the retrovirally transduced bone marrow cells showed EGFP expression in in vitro clonogenic progenitors (GM-CFU), day 13 colony-forming unit-spleen (CFU-S), and in peripheral blood cells and marrow repopulating cells of transplanted mice. In conjunction with fluorescence-activated cell sorting (FACS) techniques EGFP expression could be used as a marker to select for greater than 95% pure populations of transduced cells and to phenotypically define the transduced cells using antibodies directed against specific cell-surface antigens. Detrimental effects of EGFP expression were not observed: fluorescence intensity appeared to be stable and hematopoietic cell growth was not impaired. The data show the feasibility of using EGFP as a convenient and rapid reporter to monitor retroviral-mediated gene transfer and expression in hematopoietic cells, to select for the genetically modified cells, and to track these cells and their progeny both in vitro and in vivo.


2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
A Kaminski ◽  
C Yerebacan ◽  
C Skrabal ◽  
B Westphal ◽  
D Greiner ◽  
...  

2001 ◽  
Vol 155 (5) ◽  
pp. 733-738 ◽  
Author(s):  
Josef Priller ◽  
Derek A. Persons ◽  
Francisco F. Klett ◽  
Gerd Kempermann ◽  
Georg W. Kreutzberg ◽  
...  

The versatility of stem cells has only recently been fully recognized. There is evidence that upon adoptive bone marrow (BM) transplantation (BMT), donor-derived cells can give rise to neuronal phenotypes in the brains of recipient mice. Yet only few cells with the characteristic shape of neurons were detected 1–6 mo post-BMT using transgenic or newborn mutant mice. To evaluate the potential of BM to generate mature neurons in adult C57BL/6 mice, we transferred the enhanced green fluorescent protein (GFP) gene into BM cells using a murine stem cell virus-based retroviral vector. Stable and high level long-term GFP expression was observed in mice transplanted with the transduced BM. Engraftment of GFP-expressing cells in the brain was monitored by intravital microscopy. In a long-term follow up of 15 mo post-BMT, fully developed Purkinje neurons were found to express GFP in both cerebellar hemispheres and in all chimeric mice. GFP-positive Purkinje cells were also detected in BM chimeras from transgenic mice that ubiquitously express GFP. Based on morphologic criteria and the expression of glutamic acid decarboxylase, the newly generated Purkinje cells were functional.


2020 ◽  
Vol 159 (6) ◽  
pp. 2525-2537.e23 ◽  
Author(s):  
Thomas Fux ◽  
Cecilia Österholm ◽  
Raquel Themudo ◽  
Oscar Simonson ◽  
Karl-Henrik Grinnemo ◽  
...  

2011 ◽  
Vol 60 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Margitta Retz ◽  
Jens Rotering ◽  
Roman Nawroth ◽  
Alexander Buchner ◽  
Michael Stöckle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document