The Impact of Mutations in the A2 Domain of Von Willebrand Factor on its Cleavage by ADAMTS13.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3666-3666
Author(s):  
Wolf A. Hassenpflug ◽  
Ulrich Budde ◽  
Tobias Obser ◽  
Dorothea Angerhaus ◽  
Elke Drewke ◽  
...  

Abstract Von Willebrand factor (VWF) plays an important role in primary hemostasis as it mediates platelet adhesion to the vessel wall and subsequent platelet aggregation at the site of vascular injury. Since the adhesive function of VWF depends on its multimer size, the loss of high molecular weight multimers (HMWM) results in hemorrhagic diathesis as seen in classical von Willebrand disease (VWD) type 2A, which represents the most common qualitative defect of VWD. The size distribution of VWF multimers in plasma is strongly influenced - if not regulated - by the specific VWF cleaving protease ADAMTS13 that cleaves VWF at the Y1605-M1606 bond in the A2 domain. Mutations in classical VWD type 2A cluster in the A2 domain and earlier studies suggest that some of the mutations make VWF more susceptible to ADAMTS13 dependent proteolysis (group 2) while others decrease the secretion of VWF HMWM (group 1). Our aim was to investigate the impact of VWF A2 domain mutations on ADAMTS13 dependent proteolysis of VWF. We used recombinant human ADAMTS13 (rhuADAMTS13) to digest recombinant full-length VWF and a fragment spanning the VWF A1-A2-A3 domains, harboring 13 different mutations that we found in patients with VWD type 2A. Proteolysis was monitored by VWF multimer analysis and by SDS-PAGE of the VWF A1-A2-A3 fragment. Cleavage of full-length VWF resulted in multimer patterns similar to that seen in plasma of patients with VWD type 2A, confirming the specifity of the reaction. Eleven VWF mutants (C1272S, G1505R, S1506L, M1528V, delR1569, R1597W, V1607D, G1609R, G1629E, G1631D, E1638K) showed less HMWM and more pronounced proteolytic fragments than wildtype (wt) VWF digested under the same conditions. Co-expression of the wt allele attenuated the proteolysis-permissive phenotype. The G1629E mutation resulted in highly increased proteolysis, suggesting an important role of this residue in the interaction between VWF and ADAMTS13. Surprisingly, G1505E and I1628T mutations failed to increase cleavage of the full-length VWF by rhuADAMTS13. However, when these mutations were introduced in the monomeric VWFA1-A2-A3 fragments they (like others) allowed cleavage of the Y1605-M1606 bond even under non-denaturing conditions, suggestive of an increased proteolytic susceptibility since wt VWF is only cleaved under denaturing conditions. The differences between the assays of full-length VWF and A1-A2-A3 domain fragment might be due to the lack of shear in our assay. This study provides direct evidence that in VWD type 2A, VWF with mutations in the A2 domain is subject to increased cleavage by ADAMTS13. This includes mutations previously designated as group 1 (G1505R, S1506L and V1607D) suggesting that increased susceptibility to ADAMTS13 is a more general property of VWF with A2 domain mutations. Therefore future therapies for patients with VWD type 2A might target VWF cleavage by ADAMTS13. RhuADAMTS13 and VWF constructs with mutations in the A2 domain are valuable tools to investigate VWF cleavage under varying conditions. Further work should address the question how shear influences ADAMTS13 dependent cleavage of VWF mutants.

2003 ◽  
Vol 90 (09) ◽  
pp. 483-490 ◽  
Author(s):  
Emoke Posan ◽  
Robert McBane ◽  
Diane Grill ◽  
Cheri Motsko ◽  
William Nichols

SummaryThe PFA-100 instrument (Platelet Function Analyzer, Dade Behring) has been reported to be superior to the bleeding time (BT) as a screening test of primary hemostasis. However evaluation of this device has been principally limited to selected populations.The study’s aim was to determine testing performance in clinical practice, by comparing the PFA-100 to the BT for the identification of von Willebrand disease (VWD) and intrinsic platelet hypofunction.From 1998-2000, PFA-100 closure time (CT) for epinephrine-collagen (EPI) and ADP-collagen (ADP) cartridges and modified Ivy BTs were performed on outpatients referred for testing for suspected or known hemorrhagic diathesis (n=346). Evaluation included assays of von Willebrand factor and platelet aggregometry in addition to platelet flow cytometry and electron microscopy when indicated. The normal distribution of PFA-100 CTs was determined using blood samples from 61 normal donors studied on 155 occasions.Results show that thirty-four patients met the diagnostic criteria for VWD and 31 patients were diagnosed with congenital or acquired intrinsic platelet hypofunction. The sensitivity of the PFA-100 for identification of VWD was significantly better (p<0.01) than the BT with similar specificity. In contrast, the PFA-100 was comparable, but not superior to the BT for detecting platelet hypofunction.We conclude that the PFA-100 performance compares favor-ably to the BT for the identification of intrinsic platelet hypofunction in clinical practice with superior sensitivity for detecting VWD.Therefore, the PFA-100 could replace the BT for purposes of screening for VWD and intrinsic platelet hypofunction. When clinical suspicion is strong, testing should be supplemented with assays of von Willebrand factor and platelet aggregometry.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2339-2345 ◽  
Author(s):  
Wolf Achim Hassenpflug ◽  
Ulrich Budde ◽  
Tobias Obser ◽  
Dorothea Angerhaus ◽  
Elke Drewke ◽  
...  

Abstract Classical von Willebrand disease (VWD) type 2A, the most common qualitative defect of VWD, is caused by loss of high-molecular-weight multimers (HMWMs) of von Willebrand factor (VWF). Underlying mutations cluster in the A2 domain of VWF around its cleavage site for ADAMTS13. We investigated the impact of mutations commonly found in patients with VWD type 2A on ADAMTS13-dependent proteolysis of VWF. We used recombinant human ADAMTS13 (rhuADAMTS13) to digest recombinant full-length VWF and a VWF fragment spanning the VWF A1 through A3 domains, harboring 13 different VWD type 2A mutations (C1272S, G1505E, G1505R, S1506L, M1528V, R1569del, R1597W, V1607D, G1609R, I1628T, G1629E, G1631D, and E1638K). With the exception of G1505E and I1628T, all mutations in the VWF A2 domain increased specific proteolysis of VWF independent of the expression level. Proteolytic susceptibility of mutant VWF in vitro closely correlated with the in vivo phenotype in patients. The results imply that increased VWF susceptibility for ADAMTS13 is a constitutive property of classical VWD type 2A, thus explaining the pronounced proteolytic fragments and loss of HMWM seen in multimer analysis in patients.


1987 ◽  
Author(s):  
F Toti ◽  
A Stierlé ◽  
M L Wiesel ◽  
A Schwartz ◽  
J M Freyssinet ◽  
...  

Von Willebrand disease (vWD) is an inherited disorder of primary hemostasis caused by deficiency or structural abnormalities of von Willebrand factor (vWF). VWF circulates in plasma and is also present in platelets. Plasma vWF, the carrier protein for factor VIII, is a large multimeric glycoprotein composed of identical subunits linked by disulfide bridges. Plasma and platelet vWF display distinct multimeric electrophoretic patterns. The different vWD subtypes can be classified either by the determination of vWFantigen (vWFíAg) and/or by multimer distribution. Antibodies to human vWF were raised in laying hens by intramuscular injections of purified human vWF. Immunoglobulins were isolated from egg yolks by selective polyethylene glycol and ammonium sulfate precipitations. These antibodies appeared to be monospecific, as they did not react with the plasma proteins of a patient with severe vWD. The pullets received weekly 50 μg vWF for 4 weeks and then had monthly injections. The antibodies occurred as early as the third injection, the yield being 300 to 500 mg of immunoglobulin per week (6-7 eggs). The titre could be constant over periods greater than 1 year. These immunoglobulins to vWF were tested in vWFíAg electroimmunoassays and for the multimer analysis of plasma and platelet vWF by electrophoresis and immunoblotting techniques. In no case could a difference be detected between assays performed with rabbit monospecific antiserum or with yolk immunoglobulins to human vWF. Ten to 12 multimers could be revealed for normal plasma vWF and up to 12 to 14 bands for normal platelet vWF (1.7% agarose). In the case of vWD, the electrophoresis patterns were identical with both antibodies. Thus, antibodies to vWF raised in laying hens are a suitable tool to detect and to characterize vWD. Although they do not interact with protein A, yolk antibodies are certainly advantageous to produce, as they do not contain IgM or IgA. Immunoglobulin fractions can contain up to 10 % of specific antibodies. Since they are available in larger quantities and are easy to isolate, larger homogeneous batches of antibodies can be obtained. This method may easily be applied to develop antibodies to a variety of antigens.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 2048-2055 ◽  
Author(s):  
PA Kroner ◽  
ML Kluessendorf ◽  
JP Scott ◽  
RR Montgomery

Abstract von Willebrand disease (vWD) variant type IIB is an inherited bleeding disorder resulting from the spontaneous binding of defective von Willebrand factor (vWF) to platelets in vivo. To identify the molecular basis for type IIB vWD, we used reverse transcription and the polymerase chain reaction to examine the nucleotide sequence of the platelet glycoprotein (GP) Ib-binding domain encoded by the vWF messenger RNA in an affected family, and in an unrelated affected individual. We identified two different missense mutations linked with expression of type IIB vWD. These mutations, which lead to Pro574---- Leu and Val553----Met substitutions, respectively, were each introduced into the full-length vWF expression vector pvW198, and both wild-type (wt) and mutant vWF were transiently expressed in COS-7 cells. Binding assays showed that both mutant proteins showed significant non- ristocetin-dependent spontaneous binding to platelets, and that complete binding was induced by low concentrations of ristocetin that failed to induce platelet binding by wt vWF. The vWF/platelet interaction was inhibited by the anti-vWF monoclonal antibody (MoAb) AvW3, and the anti-GPIb MoAb AP1, which both block vWF binding to platelets. These results show that the identified missense mutations are the likely basis for the expression of type IIB vWD in these affected individuals.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3677-3677
Author(s):  
Mirjeta Qorraj ◽  
Tanja Falter ◽  
Sarah Steinemann ◽  
Thomas Vigh ◽  
Inge Scharrer

Abstract Abstract 3677 Introduction: The hemostatic activity of von Willebrand Factor (VWF) is mainly controlled by the plasma metalloprotease ADAMTS13, which cleaves ultralarge VWF multimers. A qualitative or quantitative deficiency of VWF induces the most common hemorrhagic diathesis, the von Willebrand Disease (VWD). The current classification graduates the VWD in three major types. Depending on severity and the type of VWD the treatment with VWF/FVIII concentrates may by necessary. The commercially available VWF/FVIII concentrates differ in their multimer structure and furthermore also in their pharmacokinetics. We investigated commercial VWF concentrates with respect to their ADAMTS 13 activity and antigen levels with the newest available methods. Moreover, to detect a possible correlation, we analysed the VWF multimer structure of the concentrates. Methods: We analysed 4 human derived VWF/VIII-concentrates (over all 7charges) after reconstitution according to the manufacturer's instructions in different dilutions. Following methods were used: BCS Method according to Böhm detects the capacity of the concentrates for autoproteolysis. The VWF solutions were diluted with 5mol/l urea and then incubated for 14–16h at 37°C in low ionic TRIS buffer containing BaCl2 and different plasma samples: pool plasma; plasma from patients with TTP with neutralizing ADAMTS13 auto-antibodies; plasma from patients with TTP without auto-antibodies. The residual VWF:Ristocetin Cofactor (VWF:RCo) activity was subsequently measured using the BC von Willebrand Reagent from Dade Behring. ELISA Technozym®ADAMTS13 and Actifluor TM ADAMTS13 are based on the kinetic measurements of the activity with fluorescence resonance energy transfer (FRET). ADAMTS13 antigen was measured by use of the Technozym ELISA kit. SDS-Gel electrophoresis in 1% Agarose Gel was used to investigate the structure of VWF multimers. Results: The BCS Method according to Böhm is an indirect measurement for endogenous ADAMTS13 activity in the investigated concentrate. Important is the loss of the residual VWF:RCo in the concentrates in presence of TTP-plasma without antibodies and pool plasma compared to the residual VWF:RCo in presence of TTP-plasma with antibodies. All concentrates show some ADAMTS13 activity, however product 1 contains more ADAMTS13 than the other concentrates. The results of the two FRETS-assays correspond very well to the BCS-method results; in addition the assays detect directly the ADAMTS13 activity also in very low measurement range. In a dilution of 16U VWF per ml concentrate the ADAMTS13 activity in product 1 with 4.3% was the highest compared to product 2: 3.2%, product 3: 2.6% and product 4: 2%. The great variability of the test results in higher concentrations may be caused by interferences between some constituents of the concentrates and the analysis. In the same sample set and dilution the ADAMTS13 antigen values correlate very well with ADAMTS13 activity values. The SDS gel electrophoresis reveals the different VWF structure of product1; it has less large and ultralarge multimers. There could be a correlation to the relatively higher ADAMTS13 activity and antigen level. Conclusion: All the investigated VWF/VIII concentrates contain some ADAMTS13 activity and antigen. This was found especially by FRETs assay due to the high sensitivity. Because of the correlation between ADAMTS13 activity and modified VWF multimer structure we like to conclude that ADAMTS13 has influence on stability and therefore also on quality of the concentrates. This might have a therapeutic consequence especially for VWD type 2A. Type 2A is characterized by a relative reduction of intermediate and large VWF multimer. The multimeric abnormalities are commonly the result of in vivo proteolytic degradation of the von Willebrand factor caused by ADAMTS13. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 97 (04) ◽  
pp. 527-533 ◽  
Author(s):  
Luigi Marco ◽  
Lisa Gallinaro ◽  
Maryta Sztukowska ◽  
Mario Mazzuccato ◽  
Monica Battiston ◽  
...  

SummaryThe normal von Willebrand factor (vWF) multimer pattern results from the ADAMTS-13 cleavage of the Tyr1605-Met1606 bond in the A2 domain of vWF. We identified a patient with severe von Willebrand disease (vWD) homozygously carrying a Cys to Phe mutation in position 2362 of vWF with markedly altered vWF multimers and an abnormal proteolytic pattern. The proband’s phenotype was characterized by a marked drop in plasma vWF antigen and ristocetin cofactor activity, and a less pronounced decrease in FVIII. The vWF multimers lacked any triplet structure, replaced by single bands with an atypical mobility, surrounded by a smear, and abnormally large vWF multimers. Analysis of the plasma vWF subunit's composition revealed the 225 kDa mature form and a single 205 kDa fragment, but not the 176 kDa and 140 kDa fragments resulting from cleavage by ADAMTS-13.The 205 kDa fragment was distinctly visible, along with the normal vWF cleavage products, in the patient's parents who were heterozygous for the Cys2362Phe mutation. Their vWF levels were mildly decreased and vWF multimers were organized in triplets, but also demonstrated abnormally large forms and smearing. Our findings indicate that a proper conformation of the B2 domain, which depends on critical Cys residues, may be required for the normal proteolytic processing of vWF multimers.


2019 ◽  
Vol 119 (07) ◽  
pp. 1102-1111
Author(s):  
Gesa König ◽  
Tobias Obser ◽  
Olivier Marggraf ◽  
Sonja Schneppenheim ◽  
Ulrich Budde ◽  
...  

AbstractThe platelet receptor glycoprotein (GP) IIb/IIIa, formed by integrins αIIb and β3, plays an important role in platelet adhesion and aggregation. Its major binding site is the arginine-glycine-aspartic acid (RGD) sequence present in several adhesive proteins. Upon platelet activation, inside-out signaling activates the complex permitting binding to RGD motif containing proteins, such as von Willebrand factor (VWF). VWF is a large multidomain plasma GP essential to primary hemostasis, which can directly interact with platelets because it exhibits binding sites for GPIbα and GPIIb/IIIa in its A1 and C4 domain, respectively. A vast variety of VWF variants have been identified in which domain-specific mutations affect distinct functions of VWF but reduced GPIIb/IIIa binding has barely been studied so far. Here, we strived to investigate the influence of C domain mutations, which have been identified in patients diagnosed with von Willebrand disease (VWD), on VWF–GPIIb/IIIa interaction. To determine binding to membrane-incorporated GPIIb/IIIa in the absence of GPIbα, we developed and validated a cell-based binding assay which uses HEK293 cells stably expressing a constitutively active form of the GPIIb/IIIa receptor complex on their plasma membrane. By employing this assay, we measured GPIIb/IIIa binding of 14 VWF C domain mutants identified in VWD patients. Mutants p.Cys2257Arg, p.Gly2441Cys, p.Cys2477Tyr, and p.Pro2722Ala exhibited significantly reduced binding. Summarizing, we have developed a useful research tool to specifically investigate GPIIb/IIIa interaction with its protein binding partners and identified four VWF variants that exhibit impaired GPIIb/IIIa binding. At least in the homozygous state, this defect could contribute to the VWD phenotype.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3939-3939
Author(s):  
Jian Su ◽  
Xia Bai ◽  
Ziqiang Yu ◽  
Zhaoyue Wang ◽  
Changgeng Ruan

Abstract The multimer distribution of Von Willebrand factor (VWF) in plasma is regulated by the specific VWF cleaving protease ADAMTS13, which cleaves at the Y1605-M1606 bond in the A2 domain of VWF under the shear stress, plays paramount roles in mediating platelet adhesion to the subendothelium during vascular damage. Quantitative deficiency or qualitative abnormity in VWF caused by the mutations in the VWF gene leads to von Willebrand disease (vWD). There exist three types of vWD. Type 1 vWD is characterized by the partial quantitative deficiency of VWF and normal multimers. Type 3 refers to complete deficiency of VWF. Type 2 vWD refers to the qualitative deficiency of VWF and is subdivided into types of 2A, 2B, 2M, 2N. Meanwhile, the subtype of 2A vWD is also subdivided into two groups regarding ADAMTS13-dependent proteolysis of VWF. Group I includes the mutations G1505R, S1506L, L1540P, V1607D, which hinder the multimer assembly and diminish the secretion of VWF while group II includes R1597W, R1597Q, G1505E, I1628T, E1628K, which make VWF more susceptible to ADAMTS13 -dependent proteolysis. All these published point mutations cluster in the A2 domain of VWF and the corresponding mutation mechanism upon VWF has been elucidated. We have identified a patient with bleeding symptoms and reduced plasma VWF antigen, factor VIII and ristocetin cofactor activity, compatible with clinical von Willebrand disease. Analysis of proband’s plasma VWF multimers in low resolution agarose gels demonstrated similar results compared to the healthy. The patient carried a heterozygous deletion mutation from position 1648 to 1650 resulting in loss of three consecutive amino acids (ProIleLeu) in the pre-pro-VWF. It has been demonstrated that the minimal substrate for ADAMTS13 is intact VWF73, a region from Asp1596 to Arg1668 of von Willebrand factor. The novel deletion mutation in this patient occurred in the intact VWF73 and its mutated effect upon cleavage by ADAMTS13 could be clarified by further experiments such as in vitro recombinant expression of mutated VWF and might strengthen our understanding of the interaction between VWF and ADAMTS13.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 236-236
Author(s):  
Qi Da ◽  
Jennifer Nolasco ◽  
Tanvir Khatlani ◽  
Fernandez Maria ◽  
Miguel A. Cruz ◽  
...  

Abstract Protein phosphorylation represents a common mechanism to regulate the structure and function of proteins. Although vast amount of extracellular proteins including secreted plasma proteins are phosphorylated, historically, phosphorylation has been intensively investigated for intracellular proteins. The plasma and subendothelial protein von Willebrand factor (VWF) undergoes post translational modifications such as glycosylation and sulphation to reach the mature protein product. However, phosphorylation of VWF has not been described. We have used mass spectrometry to analyze purified plasma VWF, and identified that serine 1613 within the A2 domain was phosphorylated. A natural occurring mutation on this residue (S1613P) causes von Willebrand disease Type 2A by increasing the susceptibility of VWF to be cleaved by ADAMTS13. Notably, S1613 overlapped with the S-X-E/pS motif, which is the consensus site for phosphorylation by an atypical kinase, FAM20c (family with sequence similarity 20, member C). Localized to the inner lumen of the golgi/endoplasmic reticulum, FAM20c is secreted and likely responsible for the phosphorylation of several secreted proteins bearing the S-X-E/ps motif. Therefore, we further investigated whether VWF can undergo phosphorylation by FAM20c and how such modification impacts the function of VWF, particularly on the activity of ADAMTS13. In vitro, recombinant FAM20c directly phosphorylated recombinant VWF-A1A2A3 domain protein and purified plasma VWF. Further analysis revealed that the isolated A2 domain but not A1 or A3 domain was phosphorylated by FAM20c. Phosphorylation was assessed employing 32P labeling of proteins, protein shift in phospho tag gel and mass spectrometry. Treatment with λ phosphatase diminished phosphorylation and a defective FAM20c kinase mutant failed to phosphorylate A2 and VWF proteins, confirming the phosphorylation event. In addition, FAM20c-mediated phosphorylation was markedly reduced in a non-phosphorylatable A2 S1613A mutant. Thus, all these outcomes indicate that the secreted kinase FAM20c can phosphorylate S1613 in the A2 domain of VWF. To explore the functional effect of S1613 phosphorylation, we compared the plasma-mediated cleavage of wild type (WT)A2, phosphomimetic S1613D mutant and the nonphosphorylatable A2 S1613A mutant. Unexpectedly, and in sharp contrast to the WT and S1613A variants, the S1613D mutant was effectively cleaved in the presence of the enzyme inhibitor, EDTA. In addition, cleavage of the S1613D mutant was robust and slightly faster than that of the WT and S1613A. These studies suggest that phosphorylation of S1613 in VWF may facilitate the cleavage of VWF multimers. To further explore the physiological relevance of phosphorylated VWF in thrombosis, we generated phospho VWF S1613 and nonphosphorylated S1613 VWF antibodies and studied their effect on thrombus formation. In a microfluidic perfusion system, whole blood supplemented with 50 μg/ml of phosphoVWF antibody but not the nonphosphoVWF antibody, markedly potentiated thrombus formation on a collagen-coated surface. Collectively, these studies suggest that S1613 phosphorylation of VWF suppress thrombus formation, in part by facilitating cleavage of the VWF multimers. These studies identify for the first time that VWF can undergo phosphorylation and opens new avenues for regulation of VWF function by phosphorylation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document