Platelet-Derived Microparticels Stimulate Proliferation of Colony-Forming Unit Granulocyte-Macrophage of Umbilical Cord Blood Hematopoietic Stem Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4191-4191
Author(s):  
Bao-An Chen ◽  
Fei Fei ◽  
Cheng-Yin Huang ◽  
Cui-Ping Li ◽  
Xiao-Ping Pei ◽  
...  

Abstract Umbilical Cord blood has become an important source of hematopoietic stem-progenitor cells for transplantation, however hematopoietic recovery after transplantation with umbilical cord blood is slower than with bone marrow or mobilized peripheral blood. Adhesion molecules on hematopoietic cells are involved in hematopoietic cells’ homing, which is considered the most important step of hematological recovery. Some articles indicated that expressions of adhesion molecules on CD34+ cells could predict the time to hematopoietic recovery after transplantation with bone marrow and peripheral blood of many adhesion molecules (such as CD62, CXCR4) are significantly lower on umbilical cord blood than on bone marrow. It is a possible reason for the difficulty in hematopoietic recovery after umbilical cord blood transplant. Platelet -derived microparticles (PMPs) are submicroscopic (<1 μm) membrane vesicles released from platelet if they are stimulated with agonists such as thrombin, collagen, or calcium ionophore A23187 or if exposed to high-stress shear forces. PMPs express several platelet-endothelium attachment receptors on their surface, for example, glycoprotein IIb/IIIa (CD41), Ib and IaIIa, and P-selectin (CD62P) and several other platelet relevant receptors such as CXCR4 and PAR-1. Some articles indicate that PMPs can affect the function of hematopoietic stem cells by increasing the adhesion of hematopoietic cells to fibrinogen, which suggests that PMP-transferred CD41 antigen plays an important role in this process. PMPs can also increase the survival of human hematopoietic cells including human CD34+ clonogenic progenitors. In our research, we observe the function of PMP to affect the cloning efficiency of colony-forming unit granulocyte-macrophage (CFU-GM). We adopt different concentrations of Thrombin (2U/ml, 1.5U/ml, 1.0U/ml and 0.5U/ml) to activate the platelet and acquire PMPs. Then PMPs were evaluated by using flow cytometry. Based on the result that stimulation of platelets by Thrombin (1U/ml) can acquire the best efficiency of PMPs, we used this concentration in all subsequent experiments. Umbilical cord mononuclear cells (MNCs) were obtained from healthy donors and isolate the MNCs by Ficoll-Hypaque density gradient centrifugation. Briefly, MNCs incubated with or without PMPs cultured in 2.7% methylcellulose. CFU-GM growth was stimulated with 30% umbilical cord serum, rhIL-3 and rh GM-CSF. Cultures were incubated at 37°C in a fully humidified atmosphere supplemented with 5% CO2. Colonies were counted under an inverted microscope after 7 or 10 days. The research was divided into four groups: 1. control group; 2. PMPs(10μg/ml); 3. PMPs(50μg/ml); 4. PMPs(100μg/ml). The colony formation was enhanced with PMPs and is dependently stimulated with PMPs. The number of colonies in the group of PMPs(100μg/ml) is more than that of other groups. The number of colonies in control group, PMPs(10μg/ml), PMPs(50μg/ml) and PMPs(100μg/ml) are 57.4±3.2, 65.6±5.6, 77.1±1.7 and 87.8±5.0 per 1×105 respectively. These increases in different groups were statistically significant when compared with control group(p<0.05). To sum up, PMPs can affect the cloning efficiency of CFU-GM of umbilical cord hematopoietic stem cells and the efficiencies are depended on the concentration of PMPs.

2002 ◽  
Vol 8 (5) ◽  
pp. 257-260 ◽  
Author(s):  
Juliet N Barker ◽  
Timothy P Krepski ◽  
Todd E DeFor ◽  
Stella M Davies ◽  
John E Wagner ◽  
...  

1993 ◽  
Vol 16 (5_suppl) ◽  
pp. 113-115 ◽  
Author(s):  
R. Miniero ◽  
U. Ramenghi ◽  
N. Crescenzio ◽  
L. Perugini ◽  
A. Busca ◽  
...  

Human umbilical cord blood as an alternative source of hematopoietic stem cells for bone marrow reconstitution, has recently been demonstrated to yield successful HLA-matched placental blood grafts in children. It has been shown that cord blood contains sufficient progenitor cells to effect hematological reconstitution. Since then, more than 25 cord blood stem cells (CBSCs) transplants have been performed worldwide for the treatment of a variety of malignant and nonmalignant diseases. The majority of the grafts performed thus far have utilized CBSCs from HLA-identical siblings. However, much of the interest in this setting is devoted to the potential use of CBSCs for HLA-mismatched and unrelated transplants. Preliminary results suggest that allorecognition and graft-versus-host disease may be less intense in CBSCs transplants than in recipients of similarly compatible bone marrow. This review summarizes the results and potential future applications of cord blood transplantation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4054-4054
Author(s):  
Aaron Victor ◽  
Mary J. Laughlin ◽  
Marcie R. Finney ◽  
Nicholas J. Greco

Abstract There is a significant unmet need for novel therapeutic treatments for patients presenting with chronic ischemic conditions such as coronary artery disease and diabetes. Revascularization measures, such as infusions with endothelial progenitor cells (EPC) characterized by the expression of early hematopoietic stem cell markers, hold significant potential in treating these patients. Pre-clinical and clinical studies using transplanted EPC to restore blood flow and improve cardiac function in animal models of ischemia have proven effective. Recent studies have used bone marrow mononuclear cells while some more recent studies have focused on enriched stem cell treatments, such as purified bone marrow hematopoietic stem cell (HSC) CD34+/133+ cell populations, in patients with coronary artery ischemia. In this study, the hypothesis to be tested was that umbilical cord blood-derived hematopoietic stem cells (CD34+/CD133+) cells may augment the formation and stability of angiogenic networks of cord-like structures derived from umbilical vein endothelial cells (HUVEC) cultured in growth factor-reduced Matrigel (GFR MG) assays. Umbilical cord blood MNC were isolated with ficoll and separated into HSC CD34+/133+ and CD34−/133− fractions. Positive fractions were flow cytometry, sorted for HSC, and stained with the lipophilic fluorescent red dye CM-DiI and the HUVEC were stained with the lipophilic fluorescent green dye Oregon Green. HUVEC alone or HSC and HUVEC were then co-cultured under hypoxic conditions (1% O2) on the GFR MG in 96 well plates. Cells were photographed with a fluorescent microscope at 16, 48, and 72 hours. Transwell experiments (0.4μm pores) were also performed with HSC CD34+/133+ and CD34−/133− fractions prepared and suspended in transwells above HUVEC plated on GFR MG on bottom wells. The presence of both HSC CD34+/133+ and CD34−/133− fractions increased the numbers of nodes (branch points of structures) and allowed the structures to persist when observed over three days (a representative experiment of N =3) (Table): Day 1 Day 1 Day 2 Day 2 Day 3 Day 3 Node # % Total Node # % Total Node # % Total HUVEC 11.6 ± 4.9 100 1.3 ± 1.2 9.2 0.33 ± 0.58 2.2 HUVEC + HSC CD34+/133+ 17.3 ± 9.2 100 6.3 ± 4.5 35.3 4.7 ± 5.5 21.4 HUVEC + HSC CD34−/133− 34 ± 13.2 100 19.7 ± 2.5 61.6 10 ± 3.6 29.8 The HSC CD34−/133− fraction resulted in a greater increase in node formation than the HSC CD34+/133+ and both fractions stimulated significant persistence in formed structures. In addition, CM-Dil labeled cells were localized at nodes points. Results with the transwell assay demonstrated that when either HSC CD34+/133+ or CD34−/133− fractions were suspended above HUVEC, augmentation of the formation of cord-like structures was not observed. In summary, both umbilical cord blood-derived HSC CD34+/133+ and CD34−/133− fractions possess properties that augment the formation of angiogenic structures. We observed that the number of nodes are greater in the presence of both HSC CD34+/133+ and CD34−/133− fractions than with HUVEC alone. The transwell experiment suggested that cell-to-cell interactions are necessary for augmentation of the cord structures. In future studies, we will address the mechanism of intercellular interactions that result in the augmentation of cord-like structures and which particular subpopulations within cord blood, both from HSC CD34+/133+ and CD34−/133− fractions are required for augmentation of structure formation.


Sign in / Sign up

Export Citation Format

Share Document