Recurrent Additional Genetic Aberrations and a Novel Mechanism of CBFB-MYH11-Rearrangement in AML M4eo Are Detected Using High-Resolution Genome-Wide Single Nucleotide Polymorphisms (SNPs) Microarrays

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3115-3115
Author(s):  
Alexander Kohlmann ◽  
Sonja Rauhut ◽  
Frank Dicker ◽  
Susanne Schnittger ◽  
Wolfgang Kern ◽  
...  

Abstract Leukemia specific fusion genes such as CBFB-MYH11 play a major role in the pathogenesis of distinct AML entities. However, additional genetic aberrations seem necessary for the development of full blown leukemia. This study was performed to decipher CBFB-MYH11 rearrangements and their accompanying genetic lesions at the molecular level. Therefore, Affymetrix SNP Array 6.0 analyses, featuring >1.8 million markers for genetic variation (>906,600 SNPs and >946,000 probes for the detection of copy number variations), were performed in 35 newly diagnosed AML with inv(16) (p13q22) or t(16;16)(p13;q22) and CBFB-MYH11-rearrangement. First, as a proof of principle, additional gains and losses of chromosomal material as observed by cytogenetics were also detected by the SNP technology. This included gains of whole chromosome 8 (n=7) and 22 (n=8). In addition, a partial trisomy 13 and a partial trisomy 6 resulting from an unbalanced translocation were confirmed. In two cases a 7q deletion was observed by chromosome banding analysis. One of these was missed by SNP array as the 7q deletion occurred in a subclone only (11% of cells with 7q deletion as determined by interphase FISH). However, SNP array analyses detected loss of 7q in two additional cases which was missed by cytogenetics. Based on SNP array data the commonly deleted region was identified to range from 7q36.1 to 7q36.3 (size: 8.5 MB; physical map position 147,549,804–156,038,680). In addition to a gain of the whole chromosome 8, frequently observed as an additional aberration, in one case SNP array analyses revealed only a partial gain on 8q ranging from 8q24.13 to 8q24.3 (size: 25.3 MB; physical map position 120,986,982–146,268,936). Furthermore, a recurrent deletion (n=2) on chromosome 18 was detected by SNP array but not detected by cytogenetics. The commonly deleted region was localized in 18q23 (size: 3.1 MB; physical map position 72,481,657–75,604,994). In two cases the CBFB-MYH11 rearrangement was cryptic and could not be detected by chromosome banding analysis or FISH using two probes flanking the breakpoints within the CBFB gene, however, a CBFB-MYH11 transcript was amplified by RT-PCR. In one of these cases SNP array data revealed a small gain on 16p13 including 3′ part of the MYH11 gene (size: 71 kb; physical map position 15,654,558–15,725,636) suggesting the insertion of additional 3′ MYH11 sequences into the CBFB rearrangement leading to a CBFB-MYH11 fusion gene. Interestingly, four cases showed a deletion on 16p13 (sizes: 176 kb, 461 kb, 464 kb, 468 kb; physical map positions 15,729,932–15,906,308, 15,726,920–16,188,116, 15,725,663–16,189,984, 15,721,133–16,189,807). All included the 5′ part of the MYH11 gene, and in 3 cases, the ABCC1 gene (multidrug resistance-associated protein 1) was included in the deleted region, which could have an impact on prognosis. The patient with the smallest deletion in 16p13 also showed a deletion on 16q22 including the ′ part of CBFB (size: 35 kb, physical map position 65,672,864–65,707,954). This would be in line with findings in chronic myeloid leukemia where comparable small deletions in the breakpoint region of BCR and ABL have been described. Furthermore, large regions of copy-neutral loss of heterozygosity were observed for the whole short arm of chromosome 1 in two cases, for 17q12 to 17qter and 19q in one case each. In conclusion, a novel mechanism leading to a CBFB-MYH11 fusion gene was identified: A cytogenetically cryptic insertion of additional MYH11 sequences into the CBFB locus. A distinct pattern of additional aberrations was confirmed showing gains of whole chromosomes 8 and 22. Small copy number changes not observable in chromosome banding analysis were detected on 7q, 8q and 18q. A recurrent region of loss of heterozygosity without copy number change was found for the whole short arm of chromosome 1 suggesting that candidate genes in this region are mutated and potentially play a pathogenetic role in AML with CBFB-MYH11-rearrangement.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4143-4143
Author(s):  
Claudia Haferlach ◽  
Alexander Kohlmann ◽  
Sonja Rauhut ◽  
Frank Dicker ◽  
Wolfgang Kern ◽  
...  

Abstract Chromosomal rearrangements involving the MLL gene occur in 3–5% of adult AML. More than 50 different partner genes have been described in acute leukemia with 11q23-abnormalities. Although MLL-rearrangements per se have a high leukemic potential, additional genetic aberrations occur. This study was intended to decipher MLLrearrangements and their accompanying genetic lesions at the molecular level. Therefore, Affymetrix SNP 6.0 microarray analyses were performed in 47 newly diagnosed AML with 11q23 aberrations. First, as a proof of principle, all gains and losses of chromosomal material as observed by cytogenetics were also detected by the SNP technology. This included recurring gains of whole chromosomes; 4 (n=3), 8 (n=7), and 19 (n=2). In addition, the following unbalanced abnormalities were detected: gain of 1q31.3 to 1q43 (n=5) and a gain of 3q (n=2). In 40/47 cases the following partner genes had been identified based on the translocation observed in chromosome banding analysis and RTPCR: AF9 (n=27), AF6 (n=4), AF10 (n=3), ELL (n=2), AF4 (n=1), AF17 (n=1), ENL (n=1), SEPT5 (n=1). In 4/47 cases results from chromosome banding analysis suggested partner genes to be located at 11q13 (n=1), 10p11 (n=1), and 19p13 (n=2). In 3/47 cases the MLL rearrangement was cryptic and only suspected by FISH analysis. Two of those (#1, #2) showed a del(11)(q23q25) in chromosome banding analyses and FISH analyses demonstrated a loss of the 3′ flanking MLL probe. In the remaining case (#3) cytogenetics showed an i(21)(q10). FISH analysis on metaphase spreads identified an additional copy of the 5′ flanking MLL probe which localized on 6q27. SNP analyses were able to resolve all three cases: #1) The deletion was fine-mapped by SNP microarray data and ranged from physical map position 117,859,541 to 11qter including exons 10 to 28 of the MLL gene. In addition, SNP microarray data revealed a gained segment on 6q ranging from physical map position 167,977,103 to 6qter including exons 2 to 28 of AF6. #2) In this case the 11q deletion spans from physical map position 117,859,541 to 121,033,713 including exons 10 to 28 of the MLL gene. SNP microarray data revealed a gained segment on 6q ranging from physical map position 168,036,784 to 168,457,799 including exons 9 to 28 of AF6. #3) Corresponding to FISH analysis SNP microarray data revealed a gained segment on 11q ranging from physical map position 117,760,488 to 117,859,673, including exons 1 to 9 of MLL. Moreover, on chromosome 6 a small deletion of 177 kb was detected, starting at physical map position 167,804,673 towards 167,982,457. This deletion included exon 1 of AF6 and a small adjacent centromeric region. In all 3 cases, subsequent RT-PCR analyses confirmed the predicted MLL-AF6 fusion. Analyzing the MLL gene further in the remaining cases revealed copy number changes in 2 cases showing gains of 11q starting from exon 12 of the MLL gene to 11qter (physical map position 117,863,291 to 11qter and 117,862,916 to 11qter). These were due to an extra copy of der(4)t(4;11)(q21;q23) and der(19)t(11;19)(q23;p13.3), respectively. In two additional cases very small deletions within MLL with a size of 4.831 kb including exons 10 and 11 (physical map position 117,859,541 to 117,864,372) and 1.699 kb including exons 10 and 11 (physical map position 117,859,541 to 117,861,240) were observed (MLL-AF6- and MLL-AF4-rearrangement). With respect to the various MLL partner genes, deletions starting in the partner genes were observed in 2 cases with MLL-AF9 rearrangement (size: 8 MB and 6.1 MB, physical map position 20,334,335 to 28,350,412 and 20,342,604 to 26,451,390). The region deleted in both cases spanned 37 genes, including several genes of the interferon alpha family and the tumor suppressor candidate TUSC1. Copy number gains were observed in the region of the partner genes in both cases with a doubling of der(4)t(4;11)(q21;q23) and der(19)t(11;19)(q23;p13.3). In conclusion, using high resolution SNP arrays we identified three novel mechanisms leading to MLL-AF6 fusions which are cytogenetically cryptic and associated with atypical FISH signal constellations. Furthermore, a distinct pattern of additional aberrations was observed showing trisomies of chromosomes 4, 8 and 19. SNP microarray data also revealed a small deletion on the short arm of chromosome 9 as a recurrent additional genetic change in AML with MLL-AF9-rearrangements.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1516-1516
Author(s):  
Claudia Haferlach ◽  
Melanie Zenger ◽  
Marita Staller ◽  
Andreas Roller ◽  
Kathrin Raitner ◽  
...  

Abstract Background In MDS, cytogenetic aberrations play an important role for classification and prognostication. The original IPSS and the revised IPSS classifiers have clearly demonstrated the prognostic impact of distinct cytogenetic abnormalities. The vast majority of chromosome aberrations in MDS are gains or losses of chromosomal material while balanced rearrangements are rare. However, more than 50% of MDS and even more in low risk MDS harbor a normal karyotype. Chromosome banding analysis can only detect gains and losses of more than 10 Mb size due to its limited resolution and is dependent on proliferation of the MDS clone in vitro to obtain metaphases. Array CGH has a considerably higher resolution and does not rely on proliferating cells. Aims In this study we addressed the question whether MDS with normal karyotype harbor cytogenetically cryptic gains and losses. Patients and Methods 520 MDS patients with normal karyotype were analyzed by array CGH (Human CGH 12x270K Whole-Genome Tiling Array, Roche NimbleGen, Madison, WI). For all patients cytomorphology and chromosome banding analysis had been performed in our laboratory. The cohort comprised the following MDS subtypes: RA (n=22), RARS (n=43), RARS-T (n=27), RCMD (n=124), RCMD-RS (n=111), RAEB-1 (n=104), and RAEB-2 (n=89). Median age was 72.2 years (range: 8.9-90.1 years). Subsequently, recurrently deleted regions detected by array CGH were validated using interphase-FISH. Results In 52/520 (10.0%) patients copy number changes were identified by array CGH. Only eight cases (1.5%) harbored large copy number alterations >10 Mb in size, as such generally detectable by chromosome banding analysis. These copy number alterations were confirmed by interphase-FISH. They were missed by chromosome banding analysis due to small clone size (n=2), insufficient in vitro proliferation (n=3) or poor chromosome morphology (n=3). In the other 44 patients with submicroscopic copy number alterations 18 gains and 32 losses were detected. The sizes ranged from 193,879 bp to 1,690,880 bp (median: 960,176 bp) in gained regions and 135,309 bp to 3,468,165 bp (median: 850,803 bp) in lost regions. Recurrently deleted regions as confirmed by interphase-FISH encompassed the genes TET2 (4q24; n=9), DNMT3A (2p23; n=3), ETV6 (12p13; n=2), NF1 (17q11; n=2), RUNX1 (21q22; n=2), and STAG2 (Xq25, deleted in 2 female patients). No recurrent submicroscopic gain was detected. In addition, we performed survival analysis and compared the outcome of patients with normal karyotype also proven by array CGH (n=462) to patients with aberrant karyotype as demonstrated by array CGH (n=52). No differences in overall survival were observed. However, overall survival in 35 patients harboring deletions detected solely by array CGH was significantly shorter compared to all others (median OS: 62.1 vs 42.4 months, p=0.023). Conclusions 1. Array CGH detected copy number changes in 10.0% of MDS patients with cytogenetically normal karyotype as investigated by the gold standard method, i.e. chromosome banding analysis. 2. Most of these alterations were submicroscopic deletions encompassing the genes TET2, ETV6, DNMT3A, NF1, RUNX1, and STAG2. 3. Interphase-FISH for these loci can reliably pick up these alterations and is an option to be easily performed in routine diagnostics in MDS with normal karyotype. 4. Patients harboring deletions detected solely by array-CGH showed worse prognosis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Zenger:MLL Munich Leukemia Laboratory: Employment. Staller:MLL Munich Leukemia Laboratory: Employment. Roller:MLL Munich Leukemia Laboratory: Employment. Raitner:MLL Munich Leukemia Laboratory: Employment. Holzwarth:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Kohlmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2020 ◽  
Author(s):  
Jing Ma ◽  
xiaofei Ai ◽  
Jinhuan Wang ◽  
Limin Xing ◽  
Chen Tian ◽  
...  

Abstract Background Chromosomal abnormalities play an important role in classification and prognostication of myelodysplastic syndromes (MDS) patients. However, more than 50% low risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients. Methods To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA. Results MLPA identifies copy number changes in 16.7% of 144 MDS patients and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA, versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Conclusion Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.


Author(s):  
Jing Ma ◽  
Xiaofei Ai ◽  
Jinhuan Wang ◽  
Limin Xing ◽  
Chen Tian ◽  
...  

AbstractChromosomal abnormalities play an important role in classification and prognostication of myelodysplastic syndrome (MDS) patients. However, more than 50% of low-risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients. To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding analysis, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA. MLPA identifies copy number changes in 16.7% of 144 MDS patients, and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.


2020 ◽  
Author(s):  
Jing Ma ◽  
xiaofei Ai ◽  
Jinhuan Wang ◽  
Limin Xing ◽  
Chen Tian ◽  
...  

Abstract Background In myelodysplastic syndromes (MDS), cytogenetic aberrations play an important role for classification and prognostication. However, more than 50% low risk MDS patients harbor a normal karyotype. Recently, multiplex ligation-dependent probe amplification (MLPA) has emerged as an effective and robust method for the detection of cytogenetic aberrations in MDS patients.Methods To characterize the subset of MDS with normal karyotype or failed chromosome banding analysis, we analyzed 144 patient samples with normal karyotype or undetectable through regular chromosome banding, which were subjected to parallel comparison via fluorescence in situ hybridization (FISH) and MLPA.Results MLPA identifies copy number changes in 16.7% of 144 MDS patients and we observed a significant difference in overall survival (OS) (median OS: undefined vs 27 months, p=0.0071) in patients with normal karyotype proved by MLPA, versus aberrant karyotype cohort as determined by MLPA. Interestingly, patients with undetectable karyotype via regular chromosome banding indicated inferior outcome. Conclusion Collectively, MDS patients with normal or undetectable karyotype via chromosome banding analysis can be further clarified by MLPA, providing more prognostic information that benefit for individualized therapy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1371-1371
Author(s):  
Alexander Kohlmann ◽  
Andreas Roller ◽  
Sandra Weissmann ◽  
Sabrina Kuznia ◽  
Melanie Zenger ◽  
...  

Abstract Introduction In acute myeloid leukemia (AML), the karyotype and molecular mutation profile are the strongest determinants for prognosis and biological subclassification. Yet, diagnostic analyses rely on chromosome banding technique and sequencing of a constantly growing number of genes. Aims In an era of novel high-throughput sequencing assays becoming viable options for diagnostic implementation we aimed to evaluate whether the application of targeted exome sequencing can reliably identify copy number states and molecular mutations in a single-step procedure. Patients and Methods The pilot cohort included four AML cases with a complex karyotype with known chromosomal alterations as detected by chromosome banding analysis, 24-color FISH and array CGH (12x270K microarrays, NimbleGen, Madison, WI). The size of the aberrant clone was determined by suitable probes using interphase-FISH on bone marrow smears. For sequencing analysis genomic DNA was extracted from mononuclear cells and 50 ng were processed using the TruSight Rapid Capture kit (Illumina, San Diego, CA). Sequencing was performed on a MiSeq instrument using the 2x150 bp paired-end read chemistry targeting a subset of the human exome (2,761 genes; 37,366 exons). This exome enrichment library contained >50,000 probes (7.75 Mb) focusing on disease-causing variants in specific inherited conditions (Illumina). Data analysis was performed applying default settings of the on-board MiSeq Reporter Software version 2.2.29 using the Burrows-Wheeler Aligner to align the reads against the hg19 reference genome. Further processing to delineate copy number states was performed using the ExomeCNV package. Results Each patient was analyzed in a single MiSeq run and in median 22,022,240 (range 19,233,134 - 23,507,016) reads were generated. The median coverage per target region was in the range of 74-186 reads. Coverage uniformity was assessed according to the manufacturer's recommendations. Over 98% of bases were covered at 0.12X mean coverage for each sample. Next, two data analysis pipelines were triggered, i.e. copy number states and mutation analysis. With respect to copy number alterations (CNA), in total 65 CNA were detected by chromosome banding analysis/array CGH. Of these, 21 were gains, 44 were losses. The size of the deletions ranged between 378,377 and 141,048,720 bp (median 10,731,680 bp), the size of the gains ranged between 281,608 and 46,404,876 bp (median 4,947,125 bp), respectively. In total, 63/65 (96.9%) copy number alterations were correctly identified by targeted exome sequencing. The NGS assay was able to detect copy number alterations that were present in only 23% of cells as determined by interphase-FISH. In detail, one of the deletions was homozygous with a larger deletion on the long arm of chromosome 17 (size: 1,070,162 bp) and a small intragenic deletion within the NF1 gene. This homozygous deletion was detected by array-CGH and by exome sequencing. Interestingly, the higher resolution of the exome sequencing assay in this area enabled the exact localization (exons 37 to 58) and size determination (78,415 bp) of the deletion. Overall, only 2 gains escaped detection. These were two small gained regions on a highly rearranged chr. 19. Secondly, with respect to mutation analysis, the same assay detected 19, 20, 21 and 28 mutations in the four analyzed patients. This pipeline took only putative variants into account that were not present in the control sample, were having a coverage ≥30 reads with a mutation load ≥10%, and had a confirmed COSMIC mutation entry (v66). 12/2,761 (0.4%) genes harbored mutations in at least 2/4 patients. This included genes known to be involved in leukemogenesis. TP53 mutations were detected in all four cases and all were confirmed by Sanger sequencing. Conclusions A targeted exome sequencing assay allowed to robustly assess copy number states in AML at diagnosis at a resolution greater than current conventional array CGH analyses. Moreover, exome sequencing read data also can be used to delineate mutation profiles. Thus, this workflow enabled to call gene mutations and copy number states in a single assay and is a promising option for a routine diagnostics assay in the future. The gene panel has to be further optimized by adding genes known to be mutated in hematological malignancies. More data is necessary to precisely determine the detection limit and to optimize software tools for a routine use. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Roller:MLL Munich Leukemia Laboratory: Employment. Weissmann:MLL Munich Leukemia Laboratory: Employment. Kuznia:MLL Munich Leukemia Laboratory: Employment. Zenger:MLL Munich Leukemia Laboratory: Employment. Kern:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 502
Author(s):  
Georgiana Gug ◽  
Caius Solovan

Background and Objectives: Mycosis fungoides (MF) and large plaque parapsoriasis (LPP) evolution provide intriguing data and are the cause of numerous debates. The diagnosis of MF and LPP is associated with confusion and imprecise definition. Copy number alterations (CNAs) may play an essential role in the genesis of cancer out of genes expression dysregulation. Objectives: Due to the heterogeneity of MF and LPP and the scarcity of the cases, there are an exceedingly small number of studies that have identified molecular changes in these pathologies. We aim to identify and compare DNA copy number alterations and gene expression changes between MF and LPP to highlight the similarities and the differences between these pathologies. Materials and Methods: The patients were prospectively selected from University Clinic of Dermatology and Venereology Timișoara, Romania. From fresh frozen skin biopsies, we extracted DNA using single nucleotide polymorphism (SNP) data. The use of SNP array for copy number profiling is a promising approach for genome-wide analysis. Results: After reviewing each group, we observed that the histograms generated for chromosome 1–22 were remarkably similar and had a lot of CNAs in common, but also significant differences were seen. Conclusions: This study took a step forward in finding out the differences and similarities between MF and LPP, for a more specific and implicitly correct approach of the case. The similarity between these two pathologies in terms of CNAs is striking, emphasizing once again the difficulty of approaching and differentiating them.


Cytometry ◽  
1989 ◽  
Vol 10 (2) ◽  
pp. 124-133 ◽  
Author(s):  
Marty F. Bartholdi ◽  
Julie Meyne ◽  
Roger G. Johnston ◽  
L. Scott Cram

1994 ◽  
Vol 72 (5) ◽  
pp. 958-964 ◽  
Author(s):  
Vitaly T. Volobouev ◽  
Constantinus G. van Zyll de Jong

The chromosomes of Sorex haydeni are described for the first time and their banding pattern (R- and C-bands) compared with that of Sorex cinereus. The karyotype of S. haydeni differs from that of S. cinereus in its diploid (64 vs. 66) and fundamental numbers (66 vs. 70). These differences are the result of one tandem translocation and one pericentric inversion. The size and form of the Y chromosomes are also quite different in these taxa. The karyotypic differences strongly support the status of independent species, proposed for these taxa earlier on the basis of gross morphological characters.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2016-2016 ◽  
Author(s):  
Claudia Schoch ◽  
Mirjam Klaus ◽  
Susanne Schnittger ◽  
Wolfgang Hiddemann ◽  
Wolfgang Kern ◽  
...  

Abstract In AML karyotype abnormalities are not detected in 40 to 45% of cases using classical chromosome banding analysis. For several reasons false negative results might occur in chromosome banding analysis: 1. no proliferation of the aberrant clone in vitro, 2. low resolution due to technical problems or limitations of the method itself, 3. real cryptic rearrangements. In order to determine the proportion of “false negative” karyotypes by chromosome banding analysis we conducted a study using interphase-FISH and comparative genomic hybridization in addition to chromosome banding analysis. In total, chromosome banding analysis have been performed in 3849 AML at diagnosis. Of these 1748 showed a normal karyotype (45.4%). Out of these in 3 cases cytomorphology revealed an APL and in 2 cases an AML M4eo. Using interphase FISH with a PML-RARA or CBFB probe we detected cryptic PML-RARA or CBFB-rearrangements, respectively, in all 5 cases, which were cytogenetically invisible due to submicroscopic insertions. 480 cases of AML with normal karyotype were analyzed for MLL gene rearrangements using FISH with an MLL-probe. 11 cases with a cryptic MLL-rearrangement were detected (FAB-subtypes: M5a: 7, M2: 2, M0: 2). In 273 patients interphase-FISH screening with probes for ETO, ABL, ETV6, RB, P53, AML1 and BCR was performed. In 6 out of 273 (2.2%) pts an abnormality was detectable. In two cases the aberrant clone did not proliferate in vitro: 1 case each with monosomy and trisomy 13. Due to limitations of resolution in chromosome banding analysis translocations or deletions of very small chromosome fragments were only detected with FISH in n=4 cases (ETV6 rearrangements: t(11;12)(q24;p13), t(12;22)(p13;q12), ETV6 deletions: del(12)(p13), n=2). Like interphase-FISH comparative genomic hybridization (CGH) does not rely on proliferating tumor cells but in contrast to interphase-FISH allows the detection of all genomic imbalances and not only of selected genomic regions. Therefore, we selected 48 cases with normal karyotype and low in vitro proliferation (less than 15 analyzable metaphases in chromosome banding analysis). In 8 of 48 cases (16.7%) an aberrant CGH-pattern was identified which was verified using interphase-FISH with suitable probes. In 3 cases a typical pattern of chromosomal gains and losses observed in complex aberrant karyotypes was detected. In one case each a trisomy 4 and 13 was observed, respectively. In one case trisomy 13 was accompanied by gain of material of the long arm of chromosome 11 (11q11 to 11q23). One case each showed loss of chromosome 19 and gain of the long arm of chromosome 10, respectively. In conclusion, CGH in combination with interphase-FISH using probes for the detection of balanced rearrangements is a powerful technique for identifying prognostically relevant karyotype abnormalities in AML assigned to normal karyotype by chromosome banding analysis. Especially this is true in cases with a low yield of metaphases and in AML with a high probability of carrying a specific, cytogenetically cryptic fusion-gene. Thus, in these cases interphase-FISH and CGH should be performed in a diagnostic setting to classify and stratify patients best.


Sign in / Sign up

Export Citation Format

Share Document