normal karyotype
Recently Published Documents


TOTAL DOCUMENTS

1387
(FIVE YEARS 219)

H-INDEX

74
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Yu Jiang ◽  
Lili Wu ◽  
Yunshen Ge ◽  
Jian Zhang ◽  
Yanru Huang ◽  
...  

Background: The prenatal BACs-on-Beads™ (PNBoBs™) assay has been applied worldwide for prenatal diagnosis. However, there are neither guidelines nor consensus on choosing patients, sample types, or clinical pathways for using this technique. Moreover, different perspectives have emerged regarding its clinical value. This study aimed to evaluate its clinical utility in the context of clinical practice located in a prenatal diagnostic center in Xiamen, a city in southeast China.Methods: We tested 2,368 prenatal samples with multiple referral indications using both conventional karyotyping and PNBoBs™. Positive results from PNBoBs™ were verified using current gold-standard approaches.Results: The overall rates for the detection of pathogenic copy number variation (pCNV) by karyotyping and PNBoBs™ were 1.9% (46/2,368) and 2.0% (48/2,368), respectively. The overall detection rate of karyotyping combined with PNBoBs™ for pCNV was 2.3% (54/2,368). A total of 13 cases of copy number variation (CNV)with a normal karyotype were detected by PNBoBs™. Another case with a normal karyotype that was detected as a CNV of sex chromosomes by PNBoBs™ was validated to be maternal cell contamination by short tandem repeat analysis.Conclusion: Karyotyping combined with PNBoBs™ can improve both the yield and efficiency of prenatal diagnosis and is appropriate in the second trimester in all patients without fetal ultrasound anomalies who undergo invasive prenatal diagnosis.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Jingjing Liu ◽  
Jiayin Tong ◽  
Haiping Yang

Abstract Background The aim of this study was to analyze the level of CD33 expression in patients with newly diagnosed AML and determine its correlation with clinical characteristics. Methods Samples were collected for analysis from AML patients at diagnosis. We evaluated the level of CD33 expression by flow cytometry analysis of bone marrow. Chi-square or t- tests were used to assess the association between the high and low CD33 expression groups. Survival curves were generated by the Kaplan-Meier and Cox regression model method. Results In this study we evaluated the level of CD33 expression in de novo patients diagnosed from November 2013 until January 2019. The mean value of 73.4% was used as the cutoff for the two groups. Statistical analysis revealed that 53 of the 86 (61.2%) AML patients were above the mean. Although there was no statistical significance between CD33 expression level and gene mutation, FLT3 mutation (P = 0.002) and NPM1 mutation (P = 0.001) were more likely to be seen in the high CD33 group. The overall survival (OS) was worse in the high CD33 group (39.0 m vs. 16.7 m, x2 = 13.06, P < 0.001). The Cox survival regression display that the CD33 is independent prognostic marker (HR =0.233,p = 0.008). Univariate analysis showed that the high expression of CD33 was an unfavorable prognostic factor. Of the 86 patients, CD33-high was closely related to the patients with normal karyotype (x2 = 4.891,P = 0.027), high white blood cell count (WBC, t = 2.804, P = 0.007), and a high ratio of primitive cells (t = 2.851, P = 0.005). Conclusions These findings provide a strong rationale for targeting CD33 in combination with chemotherapy, which can be considered a promising therapeutic strategy for AML.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Djordje Pavlovic ◽  
Natasa Tosic ◽  
Branka Zukic ◽  
Zlatko Pravdic ◽  
Nada Suvajdzic Vukovic ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous malignant disease both on clinical and genetic levels. AML has poor prognosis and, therefore, there is a constant need to find new prognostic markers, as well as markers that can be used as targets for innovative therapeutics. Recently, the search for new biomarkers has turned researchers’ attention towards non-coding RNAs, especially long non-coding RNAs (lncRNAs) and micro RNAs (miRNAs). We investigated the expression level of growth arrest-specific transcript 5 (GAS5) lncRNA in 94 younger AML patients, and also the expression level of miR-222 in a cohort of 39 AML patients with normal karyotype (AML-NK), in order to examine their prognostic potential. Our results showed that GAS5 expression level in AML patients was lower compared to healthy controls. Lower GAS5 expression on diagnosis was related to an adverse prognosis. In the AML-NK group patients had higher expression of miR-222 compared to healthy controls. A synergistic effect of GAS5low/miR-222high status on disease prognosis was not established. This is the first study focused on examining the GAS5 and miR-222 expression pattern in AML patients. Its initial findings indicate the need for further investigation of these two non-coding RNAs, their potential roles in leukemogenesis, and the prognosis of AML patients.


2021 ◽  
Author(s):  
Zhanhui Ou ◽  
Yu Deng ◽  
Yunhao Liang ◽  
Zhiheng Chen ◽  
Ling Sun

Abstract Background: To evaluate the ability of next-generation sequencing (NGS) to conduct preimplantation genetic testing (PGT) for thalassemia using affected embryos. Methods: This study included data from 36 couples who underwent PGT for thalassemia without proband and relative pedigrees. NGS results were compared with prenatal diagnosis results.Results: Thirty-six couples (29 α-thalassemia and 7 β-thalassemia) underwent 41 PGT cycles (31 α-thalassemia and 10 β-thalassemia). All biopsied blastocysts received conclusive results from NGS analysis (100%, 217/217). One hundred and sixty (73.7%, 160/217) were determined to be unaffected by thalassemia. PGT-A (PGT for aneuploidy) results showed that 112 (70.0%, 112/160) were euploid. Thirty-four couples were transferred with a single blastocyst (53 frozen embryo transfer (FET) cycles). Thirty-two cycles resulted in clinical pregnancies, and the clinical pregnancy rate was 60.1% (32/53) per FET cycle. Twenty-two cycles (22 couples) resulted in 23 live births and the live birth rate was 43.4% (23/53, 3 cycles were ongoing pregnancy). All 25 cycles’ prenatal diagnosis results and/or thalassemia gene analysis after the delivery were concordant with the NGS-PGT results. Seven cycles were miscarried before 12 weeks’ gestation, and the abortion villus in four cycles showed a normal karyotype and thalassemia results consistent with the NGS-PGT results. Aborted fetus samples from 3 cycles were not available because the pregnancy was less than 5 weeks.Conclusion: NGS can be used to conduct PGT for thalassemia using affected embryos as a reference.Trial registration: Retrospectively registered.


2021 ◽  
Vol 22 (4) ◽  
pp. 27-35
Author(s):  
A. O. Sedova ◽  
A. I. Martemyanova ◽  
V. B. Chernykh

The review presents generalized current data on sperm aneuploidy in healthy (fertile) men and infertile male patients with a normal karyotype and with chromosomal abnormalities. The mechanisms of aneuploidy in germ cells, factors affecting of its level, the relationship with defects of spermatogenesis, meiosis, decreased sperm parameters, as well as the effect of sperm aneuploidy on male fertility, embryo development and gestation are discussed.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 2) ◽  
pp. LBA-4-LBA-4
Author(s):  
Masayuki Umeda ◽  
Jing Ma ◽  
Benjamin J. Huang ◽  
Kohei Hagiwara ◽  
Tamara Westover ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have a dismal prognosis due to a high relapse rate; however, the molecular basis leading to relapsed pediatric AML has not yet been fully characterized. To define the spectrum of alterations common at relapse, we performed integrated profiling of 136 relapsed pediatric AML cases with RNA sequencing (RNA-seq), whole-genome sequencing, and target-capture sequencing. In addition to well-characterized fusion oncoproteins, such as those involving KMT2A (n=36, 26.5%) or NUP98 (n=18, 13.2%), we also identified somatic mutations in UBTF (upstream binding transcription factor) in 12 of 136 cases (8.8%) of this relapsed cohort. Somatic alterations of the UBTF gene, which encodes a nucleolar protein that is a component of the RNA Pol I pre-initiation complex to ribosomal DNA promoters, have rarely been observed in AML. In our cohort, all alterations can be described as heterozygous in-frame exon 13 tandem duplications (UBTF-TD), either at the 3' end of exon 13 of UBTF or of the entire exon 13 (Fig. A). As we noticed limited detection in our pipeline as a result of complex secondary indels alongside the duplications, we established a soft-clipped read-based screening method to detect UBTF-TD more efficiently. Applying the screening to RNA-seq data of 417 additional pediatric AMLs from previous studies and our clinical service, we identified 15 additional UBTF-TDs, many of which have not been previously reported. At the amino acid level, UBTF-TDs caused amino acid insertions of variable sizes (15-181 amino acids), duplicating a portion of high mobility group domain 4 (HMG4), which includes short leucine-rich sequences. UBTF-TD AMLs commonly occurred in early adolescence (median age: 12.6, range: 2.4-19.6), and 19 of the total 27 cases had either normal karyotype (n=12) or trisomy 8 (n=7). UBTF-TD is mutually exclusive from other recurrent fusion oncoproteins, such as NUP98 and KMT2A rearrangements (Fig. B), but frequently occurred with FLT3-ITD (44.4%) or WT1 mutations (40.7%). The median variant allele fraction (VAF) of the UBTF-TD was 48.0% (range: 9.7-66.7%). In four cases with data at multiple disease time points, the identical UBTF-TDs were present at high allele fractions at all time points, suggesting that UBTF-TD is a clonal alteration. tSNE analysis of the transcriptome dataset showed that UBTF-TD AMLs share a similar expression pattern with NPM1 mutant and NUP98-NSD1 AML subtypes, including NKX2-3 and HOXB cluster genes (Fig. C) . Altogether, these findings suggest that UBTF-TD is a unique subtype of pediatric AML. To address the impact of UBTF-TD expression in primary hematopoietic cells, we introduced UBTF-TD and UBTF wildtype expression vectors into cord blood CD34+ cells via lentiviral transduction. UBTF-TD expression promotes colony-forming activity and cell growth, yielding cells with a persistent blast-like morphology (Fig. D). Further, transcriptional profiling of these cells demonstrated expression of HOXB genes and NKX2-3, similar to UBTF-TD AMLs in patients, indicating that UBTF-TD is sufficient to induce the leukemic phenotype. To investigate the prevalence of UBTF-TDs in larger de novo AML cohorts, we applied the above UBTF-TD screening method to the available de novo AML cohorts of TCGA (n=151, adult), BeatAML (n=220, pediatric and adult), and AAML1031 (n=1035, pediatric). We identified UBTF-TDs in 4.3% (45/1035) of the pediatric AAML1031 cohort, while the alteration is less common (0.9%: 3/329, p=0.002) in the adult AML cohorts (Fig. E). In the AAML1031 cohort, UBTF-TDs remain mutually exclusive with known molecular subtypes of AML and commonly occur with FLT3-ITD (66.7%) and WT1 (40.0%) mutations and either normal karyotype or trisomy 8. The presence of UBTF-TDs in the AAML1031 cohort is associated with a poor outcome (Fig. F, median overall survival, 2.3 years) and MRD positivity; multivariate analysis revealed that UBTF-TD and WT1 are independent risk factors for overall survival within FLT3-ITD+ AMLs. In conclusion, we demonstrate UBTF-TD defines a unique subtype of AMLs that previously lacked a clear oncogenic driver. While independent of subtype-defining oncogenic fusions, UBTF-TD AMLs are associated with FLT3-ITD and WT1 mutations, adolescent age, and poor outcomes. These alterations have been under-recognized by standard bioinformatic approaches yet will be critical for future risk-stratification of pediatric AML. Figure 1 Figure 1. Disclosures Iacobucci: Amgen: Honoraria; Mission Bio: Honoraria. Miller: Johnson & Johnson's Janssen: Current Employment. Mullighan: Pfizer: Research Funding; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Amgen: Current equity holder in publicly-traded company.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jan Pavlicek ◽  
Eva Klaskova ◽  
Sabina Kapralova ◽  
Alzbeta Moravova Palatova ◽  
Alicja Piegzova ◽  
...  

Abstract Background Severe or critical congenital heart defects (CHDs) constitute one third of the heart defect cases detected only after birth. These prenatally unrecognised defects usually manifest as cyanotic or acyanotic lesions and are diagnosed postnatally at various times. The aim of the study was to identify their clinical symptoms and determine individual risk periods for CHD manifestation. Methods Data were assessed retrospectively based on a cohort of patients born between 2009 and 2018 in a population of 175,153 live births. Occurrence of the first symptoms of CHD was classified into: early neonatal (0–7 days), late neonatal (8–28 days), early infancy (1–6 months), or late infancy (6–12 months). The first symptom for which the child was referred to a paediatric cardiologist was defined as a symptom of CHD. Results There were 598 major CHDs diagnosed in the studied region, 91% of which were isolated anomalies. A concomitant genetic disorder was diagnosed in 6% of the cases, while 3% presented extracardiac pathology with a normal karyotype. In total, 47% (282/598) of all CHDs were not identified prenatally. Of these, 74% (210/282) were diagnosed as early neonates, 16% (44/282) as late neonates, and 10% (28/282) as infants. The most common symptoms leading to the diagnosis of CHD were heart murmur (51%, 145/282) and cyanosis (26%, 73/282). Diagnosis after discharge from the hospital occurred in 12% (72/598) of all major CHDs. Ventricular septal defect and coarctation of the aorta constituted the majority of delayed diagnoses. Conclusions In conclusion, murmur and cyanosis are the most common manifestations of prenatally undetected CHDs. Although most children with major CHDs are diagnosed as neonates, some patients are still discharged from the maternity hospital with an unidentified defect.


Author(s):  
Sydney Fobare ◽  
Jessica Kohlschmidt ◽  
Hatice Gulcin Ozer ◽  
Krzysztof Mrózek ◽  
Deedra Nicolet ◽  
...  

Prognostic factors associated with chemotherapy outcomes in patients with acute myeloid leukemia (AML) are extensively reported, and one gene whose mutation is recognized as conferring resistance to several newer targeted therapies is protein tyrosine phosphatase non-receptor type 11 (PTPN11). The broader clinical implications of PTPN11 mutations in AML are still not well understood. The objective of this study was to determine which cytogenetic abnormalities and gene mutations co-occur with PTPN11 mutations and how PTPN11 mutations impact outcomes of patients treated with intensive chemotherapy. We studied 1,725 newly diagnosed AML patients (excluding acute promyelocytic leukemia) enrolled onto the Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology trials. In 140 PTPN11-mutated patient samples, PTPN11 most commonly co-occurred with mutations in NPM1, DNMT3A, and TET2. PTPN11 mutations were relatively common in patients with an inv(3)(q21q26)/t(3;3)(q21;q26) and a normal karyotype but were very rare in patients with typical complex karyotype and core-binding factor AML. Mutations in the N-terminal SH2 domain of PTPN11 were associated with a higher early death rate than those in the phosphatase domain. PTPN11 mutations did not affect outcomes of NPM1-mutated patients, but these patients were less likely to have co-occurring kinase mutations (i.e., FLT3-ITD), suggesting activation of overlapping signaling pathways. However, in AML patients with wild-type NPM1, PTPN11 mutations were associated with adverse patient outcomes providing a rationale to study the biology and treatment approaches in this molecular group.


2021 ◽  
Vol 118 (49) ◽  
pp. e2116427118
Author(s):  
Francesca Ferraro ◽  
Christopher A. Miller ◽  
Keegan A. Christensen ◽  
Nichole M. Helton ◽  
Margaret O’Laughlin ◽  
...  

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell–mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1741
Author(s):  
Alena Kashirina ◽  
Alena Gavrina ◽  
Emil Kryukov ◽  
Vadim Elagin ◽  
Yuliya Kolesova ◽  
...  

Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.


Sign in / Sign up

Export Citation Format

Share Document