Bone Marrow Stromal Cells Reverse Proapoptotic Effects of JAK2 Inhibitor Atiprimod in Cells Carrying the JAK2V617F mutation

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3738-3738
Author(s):  
Taghi Manshouri ◽  
Zeev Estrov ◽  
Jan Burger ◽  
Ana Livun ◽  
Ying Zhang ◽  
...  

Abstract Janus kinases (JAK) comprise a small family of cytoplasmic protein tyrosine kinases, which play an important role in the initiation of cytokine-triggered signaling events via signal transducer and activator of transcription (STAT) proteins. The recent reports of an activating somatic mutation in codon 617 of the JAK2 gene (JAK2V617F mutation) in patients with myeloproliferative disorders (MPDs), has opened new avenues for the development of targeted therapies for these malignancies and clinical trials with JAK2 inhibitors are underway. We report here the activity of Atiprimod (N,N-diethyl-8-dipropyl-2-azaspiro[4,5]decane-2-propanamine), a novel compound with anti-inflammatory properties, in retrovirus-transduced JAK2V617F mutant-expressing murine FDCP-EpoR cells, set-2 cells, and blood cells from patients with polycythemia vera (PV). We compared the growth inhibitory effect of Atiprimod against two mouse FDCP cell lines transfected with erythropoietin receptor (Epo-R), and either wild-type JAK2WT or mutant JAK2V617F, and human megakaryoblastic leukemia cells with mutated JAK2V617F (set-2 cells). The growth inhibitory effect was assessed using 3-days MTS assay. Atiprimod was more potent against FDCP cells carrying mutant JAK2V617F cells (IC50 0.42 μM) and set-2 cells (IC50 0.53 μM) than FDCP wildtype JAK2WT cells (IC50 0.69 μM). Atiprimod inhibited the phosphorylation of JAK2 and downstream STAT3, STAT5, and AKT proteins in a dose- and time-dependent manner. It induced apoptosis, as evidenced by increase in mitochondrial membrane potential, caspase3 activity, and cleavage of PARP protein. The anti-proliferative effect on expanded PV patient progenitor’s cells was paralleled by a decrease in JAK2V617F mutant allele frequency in BFU-E or CFU-GM clones in clonogenic assay. However, co-culturing of JAK2V617F mutant cells with three different bone marrow stromal cell lines (Hs5, ABM-MSC, NK-Tert) either directly (cell on cell) or indirectly (separated by 0.4 μm micropore membranes) for 48 hours resulted in a significant protection of mutant cells from the effect of Atiprimod. Co-culturing of bone marrow stromal cells prevented Atiprimod (0.4 and 0.8 μM) induced apoptosis, and reversed the inhibition of phosphorylation of STAT proteins. Our results suggest that cytokines secreted by stromal cells might play an important role in protecting the hematopoietic cells from a JAK2 inhibitor. Further dissection of the nature of interactions between JAK2V617F mutant cells and marrow stromal cells may lead to new therapeutic avenues for patients with MPD.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2510-2510
Author(s):  
Seong-Woo Kim ◽  
Jin-Hee Hwang ◽  
Hwan-Jung Yun ◽  
Samyong Kim ◽  
Deog-Yeon Jo

Abstract Stromal cell-derived factor-1 (SDF-1) plays a role in the homing of myeloma cells to bone marrow. In addition, SDF-1 modestly enhances the proliferation of myeloma cells and inhibits Dexmethasone (Dex)-induced apoptosis of the cells. Dex is currently used to treat multiple myeloma, based on its apoptic effects. In this study, we investigated the regulatory effects of Dex on SDF-1 production in bone marrow stromal cells (BMSCs) and on CXCR4 expression in myeloma cells. As previously reported, it was evident that primary myeloma cells (CD138+ cells obtained from patients with multiple myeloma) and Dex-resistant myeloma cell line RPMI8226 expressed CXCR4 and responded to SDF-1, resulting in chemotaxis. SDF-1 modestly stimulated the proliferation of primary myeloma cells and RPMI8226 cells and protected the cells from Dex-induced apoptosis. Human umbilical vein endothelial cells transduced with the SDF-1 gene using adenoviral vectors better supported the formation of cobblestone areas of primary myeloma cells and RPMI8226 cells in co-culture, similar to hematopoietic progenitor cells; this was blocked by pretreating the myeloma cells with pertussis toxin, indicating that SDF-1 plays a critical role not only in migration of the cells underneath the SDF-1-producing stromal cells but also in proliferation of the cells in contact. Dex up-regulated CXCR4 expression in RPMI8226 cells; however, its regulatory effects on CXCR4 in primary myeloma cells differed among patients. RT-PCR and Northern blot analyses revealed that Dex down-regulated SDF-1 mRNA expression in both primary BMSCs and murine stromal MS-5 cells in a dose-dependent manner. Western blot analysis and ELISA assay confirmed that Dex inhibited SDF-1 production in BMSCs. Furthermore, Dex inhibited cobblestone area formation of RPMI8226 cells in co-culture with MS-5. Interestingly, Dex up-regulated CXCR4 mRNA expression and cytoplasmic CXCR4 in BMSCs. These results indicate that Dexamethasone induces the down-regulation of SDF-1 production in BMSCs, which might mediate, at least in part, its anti-myeloma effects in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2587-2587
Author(s):  
Yang Yang ◽  
Baohua Sun ◽  
Saradhi Mallampati ◽  
Zhen Cai ◽  
Xiaoping Sun

Abstract Abstract 2587 Acute lymphoblastic leukemia (ALL) is one of the fastest-growing hematological malignancies affecting patients with all ages, particularly children. Significant advances have been made in recent years in our understanding of the disease and the development of new therapies, which have led to a greatly improved outcome. Nevertheless, in a significant number of patients with ALL, the disease relapse and become resistant to treatment, causing death of the patients. Increasing evidence suggests that relapse of the disease and resistant to treatment are largely attributed to the protection of the leukemic cells by various components in the microenvironment, such as bone marrow stromal cells. However, the cross-talk between leukemic cells and their microenvironment remains poorly understood. Therefore, better understanding the mechanisms underlying the protection of ALL cells by the microenvironment is of ultimate importance in developing new therapies targeting such protection and eventually eradicating all the leukemic cells to cure the disease. In this study, we used a coculture system with leukemic cells and bone marrow stromal cells (MSC) to mimic the in vivo interaction between the two cell types to explore the molecular events that might be responsible for the protection of ALL cells from Ara-C induced apoptosis. We cocultured human primary ALL cells with hTERT-immortalized normal human MSC and evaluated ALL cell apoptosis by FACS after staining with Annexin V and propidium iodide. In all 8 cases, the MSC provided significant protection of ALL cells from both spontaneous and Ara-C induced apoptosis. For example, the mean Ara-C induced apoptosis of ALL cells cultured without MCS was 42.7% (range, 27–54%), whereas it was 19.1% (range, 8–27%) with MSC. Similar results were obtained with human leukemia cell lines Reh, SEMK2 and RS4.11. We also found that the murine MSC line M210B4 could provide similar protection to ALL cells, whether the ALL cells are primary or cell lines. The reduced apoptosis in the coculture were confirmed by Western blot which showed that MSC could protect ALL cells from Caspase-3 and PARP cleavage. Furthermore, our results showed no significant Ara-C induced reduction in S phase when cocultured with MSC. This phenomenon was associated with decreased cyclinA and CDK2 expression. In addition, we found that cocultured with MSC resulted in phosphorylation of AKT in ALL cells and PI3K inhibitor LY294002 specifically inhibited MSC-induced activation of AKT and promoted ALL cell apoptosis. In addition, beta-catenin and c-myc had increased expression in ALL cells cocultured with MSC, suggesting that Wnt pathway could play a role in MSC-mediated protection. To identify candidate molecules potentially involved in the protection of ALL cells by MSC, we performed gene expression microarray analyses with ALL cells exposed to Ara-C in presence or absence of MSC. Our data indicated that several signaling pathways might be involved in this process, including apoptosis signaling and cell cycle checkpoint control, which confirmed above findings. The top expressed genes identified in the microarray studies were confirmed by RT-PCR. Collectively, our results demonstrated that MSC can protect ALL cells from Ara-C induced apoptosis by multiple signaling pathways, such as those involving PI3K/AKT and Wnt signaling. Hence, targeting these pathways may become potential novel therapeutic strategies to disrupt the support of the microenvironment to ALL cells and to eventually eradicate leukemic cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1772-1772 ◽  
Author(s):  
Jahangir Abdi ◽  
Yijun Yang ◽  
Patrick Meyer-Erlach ◽  
Hong Chang

Abstract INTRODUCTION It is not yet fully understood how bone marrow microenvironment components especially bone marrow stromal cells (BMSCs) induce drug resistance in multiple myeloma (MM). This form of drug resistance has been suggested to pave the way for intrinsic (de novo) resistance to therapy in early stages of the disease and contribute to acquired drug resistance in the course of treatment. Hence, deciphering the molecular mechanisms involved in induction of above resistance will help identify potential therapeutic targets in MM combined treatments. Our previous work showed that BMSCs (normal and MM patient-derived) induced resistance to bortezomib (BTZ) compared with MM cells in the absence of stroma. This resistance was associated with modulation of a transcriptome in MM cells, including prominent upregulation of oncogenes c-FOS, BIRC5 (survivin) and CCND1. However; whether these oncogenes mediate BTZ resistance in the context of BMSCs through interaction with miRNAs is not known. METHODS Human myeloma cell lines, 8226, U266 and MM.1s, were co-cultured with MM patient-derived BMSCs or an immortalized normal human line (HS-5) in the presence of 5nM BTZ for 24 h. MM cell monocultures treated with 5nM BTZ were used as controls. Co-cultures were then applied to magnetic cell separation (EasySep, Stem Cell Technologies) to isolate MM cells for downstream analyses (western blotting and qPCR). Total RNA including miRNAs was isolated from MM cell pellets (QIAGEN miRNeasy kit), cDNAs were synthesized (QIAGEN miScript RT II kit) and applied to miScript miRNA PCR Array (SABioscience, MIHS-114ZA). After normalization of all extracted Ct values to 5 different housekeeping genes, fold changes in miRNA expression were analyzed in co-cultures compared to MM cell monocultures using the 2-ΔΔCt algorithm. Moreover, survivin gene was silenced in MM cells using Ambion® Silencer® Select siRNA and Lipofectamine RNAiMAX transfection reagent. Survivin-silenced cells were then seeded on BMSCs and exposed to BTZ. Percent apoptosis of gated CD138+ MM cells was determined using FACS. For our overexpression and 3'UTR reporter experiments, we transiently transfected MM cells with pre-miR-101-3p, scrambled miRNA or pEZX-3'UTR constructs using Endofectin reagent (all from GeneCopoeia). RESULTS BMSCs upregulated survivin gene / protein (a member of inhibitors of apoptosis family) and modulated an array of miRNAs in MM cells compared to MM cells in the absence of stroma. The more noticeably downregulated miRNAs were hsa-miR-101-3p, hsa-miR-29b-3p, hsa-miR-32-5p, hsa-miR-16-5p (4-30 fold) and highly upregulated ones included hsa-miR-221-3p, hsa-miR-409-3p, hsa-miR-193a-5p, hsa-miR-125a-5p (80-330 fold). We focused on miRNA-101-3p as it showed the highest level of downregulation (30 fold) and has been shown to function as an important tumor suppressor in other malignancies. Real time RT-PCR confirmed downregulation of miRNA-101-3p. Moreover, microRNA Data Integration Portal (mirDIP) identified miRNA-101-3p as a putative target for survivin and Luciferase activity assays confirmed binding of miRNA-101-3p to 3'UTR of survivin. In addition, overexpression of miRNA-101-3p downregulated survivin and sensitized MM cells to BTZ-induced apoptosis. Furthermore, silencing of survivin upregulated miRNA-101-3p and increased BTZ-induced apoptosis in MM cell lines both in the absence of BMSCs (Apoptosis range in BTZ-treated conditions: 57.65% ± 4.91 and 28.66% ± 0.78 for si-survivin and scrambled control, respectively, p<0.05) and in the presence of BMSCs (41.23% ± 1.43 and 14.8% ± 0.66, for si-survivin and scrambled control, respectively, p<0.05). CONCLUSION Our results indicate that BMSCs downregulated miRNA-101-3p and upregulated survivin in MM cells compared to MM cells in the absence of stroma. Silencing of survivin or overexpression of miRNA-101-3p sensitized MM cells to BTZ in the presence of BMSCs. These findings suggest that miRNA-101-3p mediates BTZ response of MM cells in the presence of BMSCs by targeting survivin and disclose a role of survivin-miRNA-101-3p axis in regulation of BMSCs-induced BTZ resistance in MM cells, thus provide a rationale to further investigate the anti-myeloma activity of miRNA-101-3p in combination with BTZ as a potential novel therapeutic strategy in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3311-3318 ◽  
Author(s):  
Manik Chatterjee ◽  
Dirk Hönemann ◽  
Suzanne Lentzsch ◽  
Kurt Bommert ◽  
Christine Sers ◽  
...  

AbstractThe interleukin 6/glycoprotein 130/signal transducer and activator of transcription 3 (IL-6/gp130/STAT3) pathway has been reported to play an important role in the pathogenesis of multiple myeloma (MM) and for survival of MM cells. However, most data concerning the role of IL-6 and IL-6–triggered signaling pathways were obtained from experiments performed with MM cell lines and without considering the bone marrow microenvironment. Thus, the precise role of IL-6 and its intracellular signaling pathways for survival of human MM cells is still unclear. Here we show that treatment of human MM cells (IL-6–dependent MM cell line INA-6 and primary MM cells) with the IL-6 receptor antagonist Sant7 or with an anti-gp130 monoclonal antibody (mAb) induced apoptosis if the cells were cultured in the absence of bone marrow stromal cells (BMSCs). In contrast, apoptosis could not be observed if the MM cells were cocultured with BMSCs. The analysis of intracellular pathways revealed that Sant7 and anti-gp130 mAb were effectively inhibiting the phosphorylation of gp130 and STAT3 in the absence and presence of BMSCs, whereas ERK1 and ERK2 (ERK1,2) phosphorylation was only slightly affected. In contrast, treatment with the farnesyl transferase inhibitor, FPT III, induced apoptosis in MM cells in the absence or presence of BMSCs and led to a complete inhibition of the Ras/mitogen-activated protein kinase pathway. These observations indicate that the IL-6/gp130/STAT3 pathway is not essential for survival of human myeloma cells if they are grown in the presence of cells from the bone marrow microenvironment. Furthermore, we provide evidence that farnesyl transferase inhibitors might be useful for the development of novel therapeutic strategies for the treatment of MM.


2011 ◽  
Vol 52 (9) ◽  
pp. 1787-1794 ◽  
Author(s):  
Mu Hao ◽  
Li Zhang ◽  
Gang An ◽  
Hengxing Meng ◽  
Youjin Han ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e37203 ◽  
Author(s):  
Patricia Macanas-Pirard ◽  
Andrea Leisewitz ◽  
Richard Broekhuizen ◽  
Kelly Cautivo ◽  
Francisco M. Barriga ◽  
...  

Stem Cells ◽  
2005 ◽  
Vol 23 (7) ◽  
pp. 983-991 ◽  
Author(s):  
Claudio Muscari ◽  
Francesca Bonafé ◽  
Ivana Stanic ◽  
Flavio Flamigni ◽  
Claudio Stefanelli ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4836-4836
Author(s):  
Satoki Nakamura ◽  
Miki Kobayashi ◽  
Kiyoshi Shibata ◽  
Naohi Sahara ◽  
Kazuyuki Shigeno ◽  
...  

Abstract Cyclooxygenase-2 (COX-2) is reported to regulate apoptosis and to be an important cellular target for therapy. In this study, we demonstrated that etodolac, a COX-2 inhibitor, inhibited proliferation and induced apoptosis in myeloma cell lines (RPMI 8226 and MC/CAR cells), expressing the COX-2 enzyme. In both cell lines, etodolac more strongly induced apoptosis compared with thalidomide or meloxicam. Etodolac induced down-regulation of bcl-2 protein and mRNA, activation of caspase-9, -7 and -3, down-regulation of caspase inhibitors, cIAP-1 and survivin, and loss of mitochondrial membrane potential in a dose-dependent manner. In addition, our data demonstrated that when myeloma cells were coincubated with 50 mM etodolac on bone marrow stromal cells (BMSC), myeloma cell adhesion to BMSC was significantly inhibited compared with thalidomide or meloxicam coincubation, and the adhesion molecules VLA-4, LFA-1 (CD11a), CXCX4, and CD44 were suppressed on myeloma cells treated with etodolac. Moreover, we found that 100 mM R-etodolac, S-etodolac, and the combination of R- and S-etodolac, which are the stereoisomers of etodolac, slightly inhibited the proliferation of myeloma cells, while 50 to 100 mM etodolac significantly inhibited the proliferation of myeloma cells. In conclusion, our findings indicate that etodolac induced apoptosis via a bcl-2 dependent pathway, suppressed the expression of adhesion molecules, and inhibited myeloma cell adhesion to BMSC compared with thalidomide or meloxicam. Thus, the activities of etodolac potentially extend to the treatment of patients with myeloma resistant to standard chemotherapy, including thalidomide.


Sign in / Sign up

Export Citation Format

Share Document