Constitutively Active AKT Induces Myeloproliferative Disease, Acute Myeloid Leukemia, and T Cell Lymphoma despite Impaired Engraftment

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3793-3793
Author(s):  
Kira Gritsman ◽  
Michael G Kharas ◽  
D. Gary Gilliland

Abstract The phosphoinositide 3-kinase (PI3K)/AKT pathway is commonly dysregulated in human malignancies, including leukemia. AKT, a downstream effector of PI3K, is constitutively phosphorylated in myeloproliferative disease (MPD) and acute myeloid leukemia (AML) patient samples, suggesting that the PI3K/AKT pathway may be an attractive therapeutic target. In myeloid malignancies, this pathway is most commonly activated not by mutations in PI3K, AKT or loss of PTEN, but rather by mutations in a spectrum of upstream tyrosine kinases, such as BCR-ABL, ETV6-PDGFRb, FIPL1-PDGFRa, JAK2V617F, or FLT3-ITD. To further understand the contribution of PI3K/AKT activation to disease pathogenesis, we modeled the activation of AKT in myeloid neoplasms by such upstream effectors using a myristoylated allele of AKT (myr-AKT) that is constitutively activated. Bone marrow from 5-fluorouracil-primed C57 Bl/6 donor mice was transduced with a bicistronic retrovirus expressing myr-AKT and enhanced green fluorescent protein (EGFP) or control retrovirus expressing EGFP alone, and transplanted into 30 and 5 lethally irradiated syngeneic recipients, respectively. The myr-AKT transplant recipients had a median survival of 53 days. Of 30 myr-AKT mice, 27 (90%) developed a myeloproliferative disease (MPD), characterized by splenomegaly, hepatomegaly, expanded Mac1+Gr1+, Mac1+ckit+, and CD71+Ter119+ populations in the bone marrow and spleen, and increased splenocyte myeloid colony formation. Of these 27 myr-AKT mice with MPD, 19 (70%) also had thymic T cell lymphoma, characterized by infiltration of the thymus, heart, lungs, and muscle with CD4+/CD8+ lymphoblasts. Three of 30 (10%) myr-AKT mice developed acute myeloid leukemia (AML) with phenotypic attributes of erythroleukemia (AML M6) in humans, characterized by infiltration of the spleen, liver and bone marrow with CD71hickit+ blasts. Control EGFP recipients had no evidence of disease. Splenocytes from mice with AML and thymocytes from mice with T cell lymphoma caused disease when transplanted into secondary recipients, whereas splenocytes from mice with MPD were unable to transplant disease. Of note, we observed that myr-AKT expression caused impaired engraftment in recipient mice, as evidenced by a decrease in the %EGFP in the bone marrow over time. Although myr-AKT expressing cells can home normally to the bone marrow, myr-AKT significantly impairs the lodging ability of transduced bone marrow in irradiated recipients by 2 weeks after transplant. Furthermore, we observed an increased rate of apoptosis in myr-AKT-expressing bone marrow and spleen cells in myr-AKT recipient mice. Taken together, these data suggest that constitutive activation of AKT paradoxically increases apoptosis and impairs engraftment of transduced cells, but demonstrate that constitutive activation of AKT alone nonetheless recapitulates the spectrum of human myeloid neoplastic phenotypes associated with activation of upstream tyrosine kinase effectors.

2020 ◽  
Vol 8 (12) ◽  
pp. 3494-3497
Author(s):  
Isabel Iturrate ◽  
Javier Loscertales ◽  
Elena Fernández‐Ruiz ◽  
Patricia Muñoz ◽  
Consuelo López ◽  
...  

2016 ◽  
Vol 16 (3) ◽  
pp. e47-e50 ◽  
Author(s):  
Marco Pizzi ◽  
Shannon Covey ◽  
Susan Mathew ◽  
Yen-Chun Liu ◽  
Jia Ruan ◽  
...  

Leukemia ◽  
2007 ◽  
Vol 21 (6) ◽  
pp. 1183-1188 ◽  
Author(s):  
G Metzgeroth ◽  
C Walz ◽  
J Score ◽  
R Siebert ◽  
S Schnittger ◽  
...  

2005 ◽  
Vol 79 (4) ◽  
pp. 294-298 ◽  
Author(s):  
Takuya Matsunaga ◽  
Kazuyuki Murase ◽  
Makoto Yoshida ◽  
Akihito Fujimi ◽  
Satoshi Iyama ◽  
...  

2021 ◽  
Vol 20 ◽  
pp. 153473542110026
Author(s):  
Andrana K. Calgarotto ◽  
Ana L. Longhini ◽  
Fernando V. Pericole de Souza ◽  
Adriana S. Santos Duarte ◽  
Karla P. Ferro ◽  
...  

Green tea (GT) treatment was evaluated for its effect on the immune and antineoplastic response of elderly acute myeloid leukemia patients with myelodysplasia-related changes (AML-MRC) who are ineligible for aggressive chemotherapy and bone marrow transplants. The eligible patients enrolled in the study (n = 10) received oral doses of GT extract (1000 mg/day) alone or combined with low-dose cytarabine chemotherapy for at least 6 months and/or until progression. Bone marrow (BM) and peripheral blood (PB) were evaluated monthly. Median survival was increased as compared to the control cohort, though not statistically different. Interestingly, improvements in the immunological profile of patients were found. After 30 days, an activated and cytotoxic phenotype was detected: GT increased total and naïve/effector CD8+ T cells, perforin+/granzyme B+ natural killer cells, monocytes, and classical monocytes with increased reactive oxygen species (ROS) production. A reduction in the immunosuppressive profile was also observed: GT reduced TGF-β and IL-4 expression, and decreased regulatory T cell and CXCR4+ regulatory T cell frequencies. ROS levels and CXCR4 expression were reduced in bone marrow CD34+ cells, as well as nuclear factor erythroid 2–related factor 2 (NRF2) and hypoxia-inducible factor 1α (HIF-1α) expression in biopsies. Immune modulation induced by GT appears to occur, regardless of tumor burden, as soon as 30 days after intake and is maintained for up to 180 days, even in the presence of low-dose chemotherapy. This pilot study highlights that GT extracts are safe and could improve the immune system of elderly AML-MRC patients.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2434-2434
Author(s):  
Jennifer Grosjean ◽  
Lionel Ades ◽  
Simone Bohrer ◽  
Pierre Fenaux ◽  
Guido Kroemer

Abstract High-risk myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are characterized by the constitutive activation of the anti-apoptotic transcription factor NF-kappaB, via the activation of the IKK complex. We show that constitutive activation of the receptor tyrosine kinase Flt3 is responsible for IKK activation and this activation of the NF-kappaB pathway was found to involve a not yet described phosphorylation of the IKK and IkBa complex involving tyrosine residues compared to serine residues in the classical NF-kappaB pathway. Chemical inhibition or knockdown of Flt3 with small interfering RNAs abolished NF-kappaB activation in MDS and AML cell lines, as well as in primary CD34+ bone marrow cells from patients, causing mitochondrial apoptosis. Epistatic analysis involving the simultaneous inhibition of Flt3 and IKK indicated that both kinases act via the same anti-apoptotic pathway. An IKK2 mutant with a constitutive kinase activity and a plasma membrane-tethered mutant of NEMO that activates IKK1/2 prevented the cytocidal action of Flt3 inhibition. IKK2 and Flt3 physically associated in MDS and AML cells and Flt3 inhibition caused the release of IKK2 from a preferential association with the plasma membrane. Flt3 inhibition only killed CD34+ bone marrow cells from high-risk MDS and AML patients, in correlation with the blast numbers and the NF-kappaB activity, yet had no lethal effect on healthy CD34+ cells or cells from low-risk MDS. These results suggest that Flt3 inhibitors might exert an anti-neoplastic effect in high-risk MDS and AML through inhibition of constitutive NF kappaB activation.


Sign in / Sign up

Export Citation Format

Share Document