Metabolic Endocrine Regulators of Hematopoietic Stem Cell Formation and Function.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1496-1496
Author(s):  
James Harris ◽  
Claire C Cutting ◽  
Michael Dovey ◽  
Wolfram Goessling ◽  
Trista North

Abstract Abstract 1496 Poster Board I-519 Obesity and subsequent diabetes have emerged as major health problems in the U.S. While the consequences of elevated blood glucose levels on the cardiovascular system and other organs are well known, the direct effects on the hematopoietic system are more elusive. Similarly, the impact of gestational diabetes on embryonic hematopoiesis has not been examined in detail. The zebrafish has emerged as an important model system to study conserved regulators of organ development and homeostasis. In order to evaluate the role of elevated glucose levels on hematopoietic stem cell (HSC) production, zebrafish embryos were exposed to increasing doses of D-glucose from 5 somites to 36 hours post fertilization (hpf); HSC number, as indicated by in situ hybridization for the conserved markers runx1 and cmyb in the Aorta-Gonad-Mesonephros (AGM) region, was increased at 0.5, 1% and 2% glucose; results were confirmed by in analysis of CD41 expression. Quantification using FACS analysis of fluorescent HSC reporter embryos and qPCR revealed a 2-3-fold enhancement following 1% glucose treatment. Other mono, di-, and trisaccharide sugars had similar effects, causing increased numbers of HSCs, however, L-glucose had no impact. BrdU incorporation in the AGM region was elevated after 1% glucose treatment, while acridine orange staining revealed an inhibitory effect on apoptosis. To evaluate potential mediators of these glucose-responsive effects, embryos were injected with antisense morpholino oligonucleotides (MO) against both the insulin (insr), and insulin-like growth factor receptors (igfr); insr and igfr receptors can each bind insulin, released following elevations in blood sugar levels. MO knockdown of insra or igfrb, but not igfra, influenceded runx1+ HSCs substantially, indicating an important role of these endocrine regulatory signaling pathways in HSC formation. However, D-glucose completely reversed these effects, implying either functional redundancy, or a multi-step, multi-effector process of HSC regulation by endocrine factors. To further clarify when insr- and/or igfr-mediated activity was influencing HSC formation and to correlate that effect with elevated glucose exposure, embryos were treated for defined periods with either 1% glucose, insulin, or IGF; exposure from 10 somites to 24 hpf influences the formation and arterial/venous specification of dorsal aorta, the conserved site of initial definitive HSC production, while exposure from 24 to 36 hpf regulates HSC induction. IGF exerted a positive effect on HSCs only after the establishment of the hematopoietic niche (>24hpf). Glucose treatment, however, positively influenced HSC formation at all time points examined, suggesting it works not only in the HSC niche to induce HSCs, but also prior to HSC formation. MO knockdown of the glucose transporter glut1 resulted in diminished HSC production, confirming a direct role of glucose in this process. To determine whether the effect of glucose elevation was mediated by changes in cellular energy production, embryos were exposed to chemical inhibitors of oxidative phosphorylation. Cyanide and oxaloacetate reversed the beneficial effects of D-glucose, indicating that energy production can modulate HSC formation. Investigation into the functional redundancy and cross-regulation of insulin and IGF on HSC self-renewal and the evolutionary conservation of the effects of energy metabolism on HSC production are ongoing; further studies will be needed to determine if glucose maintains an influential role on HSC homeostasis or bone marrow recovery following injury. These results could have an impact on methods for HSC modulation for therapeutic purposes, and may further unveil specific risks of obesity and diabetes for hematopoiesis and HSC homeostasis during gestation and in the adult. Disclosures: Goessling: Fate Therapeutics: Consultancy, Patents & Royalties. North: Fate Therapeutics: Consultancy, Patents & Royalties.

2018 ◽  
Vol 25 (35) ◽  
pp. 4535-4544 ◽  
Author(s):  
Annalisa Ruggeri ◽  
Annalisa Paviglianiti ◽  
Fernanda Volt ◽  
Chantal Kenzey ◽  
Hanadi Rafii ◽  
...  

Background: Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells not associated with vessel walls and detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and other diseases. Objective: This review aims to provide an overview on the characterization of CECs and EPCs, to describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Methods: We performed a detailed search of peer-reviewed literature using keywords related to CECs, EPCs, allogeneic hematopoietic stem cell transplantation, and hematological diseases (hemoglobinopathies, hodgkin and non-hodgkin lymphoma, acute leukemia, myeloproliferative syndromes, chronic lymphocytic leukemia). Results: CECs and EPCs are potential biomarkers for several clinical conditions involving endothelial turnover and remodeling, such as in hematological diseases. These cells may be involved in disease progression and in the neoplastic process. Moreover, CECs and EPCs are probably involved in endothelial damage which is a marker of several complications following allogeneic hematopoietic stem cell transplantation. Conclusion: This review provides information about the role of CECs and EPCs in hematological malignancies and shows their implication in predicting disease activity as well as improving HSCT outcomes.


Blood ◽  
2011 ◽  
Vol 118 (5) ◽  
pp. 1264-1273 ◽  
Author(s):  
Melanie G. Cornejo ◽  
Vinciane Mabialah ◽  
Stephen M. Sykes ◽  
Tulasi Khandan ◽  
Cristina Lo Celso ◽  
...  

Abstract The NOTCH signaling pathway is implicated in a broad range of developmental processes, including cell fate decisions. However, the molecular basis for its role at the different steps of stem cell lineage commitment is unclear. We recently identified the NOTCH signaling pathway as a positive regulator of megakaryocyte lineage specification during hematopoiesis, but the developmental pathways that allow hematopoietic stem cell differentiation into the erythro-megakaryocytic lineages remain controversial. Here, we investigated the role of downstream mediators of NOTCH during megakaryopoiesis and report crosstalk between the NOTCH and PI3K/AKT pathways. We demonstrate the inhibitory role of phosphatase with tensin homolog and Forkhead Box class O factors on megakaryopoiesis in vivo. Finally, our data annotate developmental mechanisms in the hematopoietic system that enable a decision to be made either at the hematopoietic stem cell or the committed progenitor level to commit to the megakaryocyte lineage, supporting the existence of 2 distinct developmental pathways.


2012 ◽  
Vol 209 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Anna Mansour ◽  
Grazia Abou-Ezzi ◽  
Ewa Sitnicka ◽  
Sten Eirik W. Jacobsen ◽  
Abdelilah Wakkach ◽  
...  

Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document