Carfilzomib, Lenalidomide, and Dexamethasone In Newly Diagnosed Multiple Myeloma: Initial Results of Phase I/II MMRC Trial

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 862-862 ◽  
Author(s):  
Andrzej J Jakubowiak ◽  
Dominik Dytfeld ◽  
Sundar Jagannath ◽  
David H. Vesole ◽  
Tara B. Anderson ◽  
...  

Abstract Abstract 862 Background: Carfilzomib (Cfz) is a novel, irreversible proteasome inhibitor that has demonstrated promising single-agent activity and favorable toxicity profile, including very low rates of peripheral neuropathy and neutropenia in relapsed/refractory multiple myeloma (MM). Combining Cfz with Lenalidomide (Revlimid®, Len), and Dexamethasone (Dex) into CRd shows an additive anti-MM effect in preclinical studies and lack of overlapping toxicity allowing for the use of these agents at full doses and for extended duration of time in relapsed/refractory MM (Niesvizky et al, ASH, 2009). This Phase I/II study was designed to determine the maximum tolerated dose (MTD) of CRd and to assess safety and evaluate efficacy of this combination in newly diagnosed MM. Methods: In Phase I, dose escalation follows the TITE-CRM algorithm, with Cfz as the only escalating agent starting at 20 mg/m2 (level 1), maximal planned dose 27 mg/m2 (level 2), and 15 mg/m2, if needed (level -1), given IV on days 1, 2, 8, 9, 15, 16 in 28-day cycles. Len is used at 25 mg PO (days 1–21), and Dex at 40/20 mg PO weekly (cycles 1–4/5-8) for all dose levels. Based on toxicity assessment, the study was amended to add dose level 3 with Cfz at 36 mg/m2 and the number of pts in the Phase I was increased to 35. A total of 36 pts are planned to be treated at the MTD in Phase I/II. Pts who achieve ≥ PR can proceed to stem cell collection (SCC) and autologous stem cell transplant (ASCT) after ≥ 4 cycles, although per protocol design, ASCT candidates are offered to continue CRd treatment after SCC. After completion of 8 cycles, pts receive 28-day maintenance cycles with Cfz (days 1, 2 15, 16), Len days 1–21, and Dex weekly at the doses tolerated at the end of 8 cycles. Responses are assessed by IMWG criteria with the addition of nCR. Results: The study has enrolled 24 pts to date, 4 pts at level 1 (Cfz 20), 14 at level 2 (Cfz 27) and at 6 at level 3 (Cfz 36). Toxicity data are available for 21 pts, of which 19 have completed at least the first cycle required for DLT assessment; 2 pts were removed during the first cycle for events unrelated to study therapy (1 at level 1 and 1 at level 2), and 3 are currently within their first cycle of treatment. There was a single DLT event at dose level 2 (non-febrile neutropenia requiring dose reduction of Len per protocol) and the MTD has not been reached. Hematologic toxicities were reversible and included Grade (G) 3/4 neutropenia in 3 pts, G3/4 thrombocytopenia in 3, and G3 anemia in 2. There have been additional G3 non-hematologic AEs including 1 case of DVT while on ASA prophylaxis, 1 fatigue, 1 mood alteration, and 5 glucose elevations; the last 2 AEs were related to Dex. There was no emergence of peripheral neuropathy (PN), even after prolonged treatment, except in 2 pts who developed G1 sensory PN. Twenty-three pts continue on treatment, most (20 pts) without need for any dose modifications. After a median of 4 (range 1–8) months of treatment, preliminary response rates by IMWG in 19 evaluable pts who completed at least 1 cycle are: 100% ≥ PR, 63% ≥ VGPR, 37% CR/nCR, including 3 pts with sCR. Responses were rapid with 17 of 19 pts achieving PR after 1 cycle and improving responses with continuing therapy in all pts. To date, 7 pts proceeded to SCC using growth factors only, with a median 6.3 × 106 CD34+ cells/kg collected (range 4.1–8.2), after a median of 4 cycles of CRd (range 4–8); all resumed CRd treatment after SCC. After a median of 4 months of follow-up, none of evaluable pts progressed and all are alive. Conclusion: CRd is well tolerated and highly active in newly diagnosed MM with ≥ PR of 100%, including 63% ≥VGPR and 37% CR/nCR. Accrual is ongoing, with updated toxicity and efficacy data to be presented at the meeting. The results of this study represent the first report of treatment of frontline myeloma with Cfz to date, and provide additional support to recently initiated Phase 3 trial of CRd vs. Rd in relapsed MM. Disclosures: Jakubowiak: Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Exelixis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Centocor OrthoBiotech: Consultancy, Honoraria, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau; Millennium: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Off Label Use: Lenalidomide for newly diagnosed multiple myeloma. Jagannath:Millennium: Honoraria; OrthoBiotech (Canada): Honoraria; Celgene: Honoraria; Merck: Honoraria; Onyx Pharmaceuticals: Honoraria; Proteolix, Inc: Honoraria; Imedex: Speakers Bureau; Medicom World Wide: Speakers Bureau; Optum Health Education: Speakers Bureau; PER Group: Speakers Bureau. Vesole:Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Anderson:Millennium: Honoraria, Speakers Bureau; Celgene: Honoraria, Speakers Bureau. Stockerl-Goldstein:Celgene: Speakers Bureau; Millennium: Speakers Bureau. Barrickman:Celgene: Employment, Equity Ownership. Kauffman:Onyx Pharmaceuticals: Employment, Equity Ownership. Vij:Proteolix: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4229-4229
Author(s):  
Jatin J. Shah ◽  
Rafat Abonour ◽  
Mohit Narang ◽  
Jayesh Mehta ◽  
Howard R. Terebelo ◽  
...  

Abstract Introduction: Triplet therapies are used for treatment (Tx) of both transplant-eligible and -ineligible patients (pts) with newly diagnosed multiple myeloma (NDMM). Actual patterns and outcomes of Tx are not fully understood. Connect MM® is the first and largest multicenter, US-based, prospective observational cohort study designed to characterize Tx patterns and outcomes for pts with NDMM. This analysis describes demographic and disease characteristics of pts who received triplet Tx as an induction regimen and for whom transplant was or was not intended. The analysis explores the relationship of these factors with overall survival (OS) and other efficacy endpoints. Patients and Methods: Pts aged ≥ 18 y with NDMM within 60 days of diagnosis were eligible for enrollment regardless of disease severity, medical history, or comorbidities. Data including transplant intent (yes/no) was collected at baseline; follow-up data was collected quarterly thereafter. Based on the initial intent, 2 groups were identified: patients with intent to transplant who received transplant (TT) and pts with no intent to transplant who did not receive a transplant (NT). Triplet Tx was defined as the combination of ≥ 3 concurrent therapeutic agents in the first course of Tx (within 56 days of study entry). KM analysis adjusted for age was conducted for OS. Because decisions on use of transplant and triplet therapy are influenced by multiple factors, a multivariable Cox regression analysis was performed to evaluate the contribution of the triplet therapy (yes/no) to OS and was adjusted for other variables, including age, comorbidities, and ISS staging. Results: Between September 2009 and December 2011, 1493 pts were enrolled. This analysis was on 1436 pts: 650 pts with transplant intent and 786 pts without transplant intent. The data cutoff date was November 30, 2014, and the median follow-up for overall survival (OS) was 33.8 mos. Of pts with transplant intent, 451 (69%) received transplant (TT) and 199 (31%) did not. Of pts without transplant intent, 62 (8%) received transplant and 724 (92%) did not (NT). The abstract focuses on TT and NT groups only. NT pts tended to be older and have more advanced ISS staging and higher β2-microglobulin levels than TT pts (Table). The most common triplet regimen given during the first course treatment (within 56 days) was lenalidomide, bortezomib, and dexamethasone (RVd). RVd was administered to 34% of the NT pts (76/225) and 59% of the TT pts (152/257). The most common non-triplet regimen was bortezomib and dexamethasone (Vd), which was given to 31% of NT pts (156/499) and 38% of TT pts (73/194). Within the NT group, pts given triplet Tx had a lower risk of death than those who did not receive triplet Tx (P = .0013). The multivariable analysis found triplet Tx to be associated with a 36% reduced risk of death (hazard ratio [HR] = 0.64 [95% CI, 0.50-0.82]; P = .001). ISS disease stage (HR = 1.43 [95% CI, 1.21-1.69]; P < .001) and history of diabetes (HR = 1.38 [95% CI, 1.08-1.78]; P = .012) were negative prognostic factors for OS. Within the TT group, pts who received triplet Tx did not attain an OS benefit (P = .8993), and no baseline characteristics were significantly associated with OS. These results may be limited by other factors not considered that may have influenced physicians' choice of treatment, including the use of maintenance therapy and a short follow-up period of 33.8 months. Conclusions: Triplet Tx as a first regimen is associated with longer OS in pts without transplant intent who did not receive a transplant. RVd and Vd were the most common first Tx regimens, respectively. Continued follow-up of these pts and enrollment of an additional cohort will provide additional data with mature follow-up. Table 1. Table 1. Disclosures Shah: Bristol-Myers Squibb: Research Funding; Array: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millenium: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees. Abonour:Celgene: Research Funding, Speakers Bureau. Narang:Celgene: Speakers Bureau. Mehta:Celgene Corporation: Speakers Bureau. Terebelo:Millenium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pharmacylics: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Gasparetto:Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Honoraria, Other: Export Board Committee, Speakers Bureau. Toomey:Celgene: Consultancy. Hardin:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees. Srinivasan:Celgene Corporation: Employment, Equity Ownership. Larkins:Celgene Corporation: Employment, Equity Ownership. Nagarwala:Celgene Corporation: Employment, Equity Ownership. Rifkin:Onyx Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3165-3165 ◽  
Author(s):  
Darrell J White ◽  
Suzanne Lentzsch ◽  
Cristina Gasparetto ◽  
Nizar Bahlis ◽  
Christine I Chen ◽  
...  

Introduction: The nuclear export protein Exportin 1 (XPO1) is overexpressed in a wide variety of cancers including multiple myeloma. Selinexor is a novel, first-in-class selective inhibitor of nuclear export (SINE), which blocks XPO1, forcing the nuclear retention and activation of tumor suppressor proteins. Selinexor in combination with low dose dexamethasone (Sel-dex) was recently approved based on data from the STORM study, wherein Sel-dex induced an overall response rate (ORR) of 26.2% in patients with penta-exposed, triple-class refractory multiple myeloma. Lenalidomide in combination with dexamethasone has been approved for the treatment of relapsed/refractory multiple myeloma with an ORR of 60-76%. The STOMP study assessed the efficacy and safety of the all oral combination of selinexor, lenalidomide and dexamethasone (SRd) in patients with relapsed/refractory and newly diagnosed multiple myeloma. We previously reported the recommended phase 2 dose (RP2D) of once weekly selinexor 60 mg, lenalidomide 25 mg and dexamethasone achieved an ORR of 92% in patients with RRMM who were lenalidomide naive. Here we evaluated once weekly selinexor in combination with lenalidomide and dexamethasone in patients with newly diagnosed multiple myeloma. Methods: STOMP is a multicenter, open-label study with a dose escalation (phase 1) and expansion (phase 2) to assess the maximum tolerated dose, RP2D, efficacy and safety of SRd in patients with newly diagnosed multiple myeloma. Patients with newly diagnosed multiple myeloma were eligible if they had symptomatic myeloma per the International Myeloma Working Group (IMWG) guidelines with either hypercalcemia, renal failure, anemia, bone lesions (CRAB) criteria or myeloma defining events needing systemic therapy. Enrollment in this arm is ongoing. Results: As of July 01 2019, 8 patients (4 males and 4 females ) with newly diagnosed multiple myeloma were enrolled at the starting dose level of selinexor 60 mg on days 1, 8, 15, and 22; lenalidomide 25 mg daily 1-21and dexamethasone 40 mg weekly on a 28 day cycle. The median age was 74 years (range: 51-86 years). No dose limiting toxicities (DLT) were observed in 5 DLT evaluable patients, 3 patients were not DLT evaluable because 1 patient did not finish cycle 1 due to social reasons and 2 patients missed doses due to serious adverse events (SAEs) unrelated to study drugs.. Common treatment related hematologic AEs (Grades 1/2, ≥3) were neutropenia (0%, 75%), anemia (0%, 25%), and thrombocytopenia (0%, 25%). Common non-hematologic AEs were diarrhea (63%, 0%), nausea (50%, 0%), fatigue (0%, 38%) decreased weight (38%, 0%), constipation (25%, 0%), hypokalemia (25%, 0%), and hypomagnesemia (25%, 0%). Among 7 efficacy evaluable patients, 6 patients achieved a response (ORR of 86%) including 1 complete response, 1 very good partial responses, 4 partial responses (2 unconfirmed), and 1 patient achieved a minimal response. With a median follow-up of 6.1 months, median progression-free survival was not reached. Conclusions: The all oral combination of SRd has promising activity with 6 of 7 efficacy evaluable patients achieving an objective response in patients with newly diagnosed multiple myeloma and no new or unexpected safety signals. Disclosures White: Amgen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Sanofi: Consultancy, Honoraria. Lentzsch:Bayer: Consultancy; Janssen: Consultancy; Takeda: Consultancy; BMS: Consultancy; Proclara: Consultancy; Abbvie: Consultancy; Clinical Care Options: Speakers Bureau; Sanofi: Consultancy, Research Funding; Multiple Myeloma Research Foundation: Honoraria; International Myeloma Foundation: Honoraria; Karyopharm: Research Funding; Columbia University: Patents & Royalties: 11-1F4mAb as anti-amyloid strategy; Caelum Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Bahlis:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria. Chen:Janssen: Honoraria, Research Funding; Amgen: Honoraria; Celgene: Honoraria, Research Funding. Lipe:Celgene: Consultancy; amgen: Research Funding; amgen: Consultancy. Schiller:Gilead: Research Funding; Incyte: Research Funding; J&J: Research Funding; Jazz Pharmaceuticals: Honoraria, Research Funding; Karyopharm: Research Funding; Novartis: Research Funding; Sangamo Therapeutics: Research Funding; Pfizer Pharmaceuticals: Equity Ownership, Research Funding; Onconova: Research Funding; Agios: Research Funding, Speakers Bureau; Amgen: Other, Research Funding; Astellas: Research Funding; Biomed Valley Discoveries: Research Funding; Bristol Myer Squibb: Research Funding; Celgene: Research Funding, Speakers Bureau; Constellation Pharmaceutical: Research Funding; Daiichi Sankyo: Research Funding; Eli Lilly and Company: Research Funding; FujiFilm: Research Funding; Genzyme: Research Funding. Tuchman:Karyopharm: Honoraria; Prothena: Research Funding; Roche: Research Funding; Alnylam: Honoraria, Research Funding; Amgen: Research Funding; Sanofi: Research Funding; Merck: Research Funding; Celgene: Honoraria, Research Funding, Speakers Bureau. Kotb:Karyopharm: Equity Ownership; Janssen: Honoraria; Merck: Honoraria, Research Funding; Celgene: Honoraria; Amgen: Honoraria; Takeda: Honoraria. Leblanc:Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees. Sebag:Amgen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees. Venner:Sanofi: Honoraria; Amgen: Honoraria, Research Funding; Janssen: Honoraria; J&J: Research Funding; Takeda: Honoraria; Celgene: Honoraria. Bensinger:Amgen, Celgene: Other: Personal Fees, Research Funding, Speakers Bureau; Takeda, Janssen: Speakers Bureau; Sanofi, Seattle Genetics, Merck, Karyopharm: Other: Grant. Sheehan:Karyopharm Therapeutics: Employment, Equity Ownership. Chai:Karyopharm Therapeutics: Employment, Equity Ownership. Kai:Karyopharm Therapeutics: Employment, Equity Ownership. Shah:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Baljevic:Karyopharm: Other: Internal Review Committee participant; Cardinal Health Specialty Solutions: Consultancy; Takeda Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 595-595 ◽  
Author(s):  
Enrique M. Ocio ◽  
Paula Rodriguez Otero ◽  
Sara Bringhen ◽  
Stefania Oliva ◽  
Axel Nogai ◽  
...  

Abstract Background: Isatuximab (ISA) is an anti-CD38 monoclonal antibody with multiple modes of action for killing tumor cells via direct tumor targeting and immune cell engagement. ISA, combined with bortezomib, has demonstrated strong potentiation in a multiple myeloma (MM) xenograft model (Clin Cancer Res 2014:20:4754). This supported evaluation of ISA with bortezomib combinations in pts with newly diagnosed multiple myeloma (NDMM) ineligible for transplant. In the initial cohort, ISA combined with bortezomib, cyclophosphamide, and dexamethasone (dex) was well tolerated with 73% of pts achieving very good partial response (VGPR) or better and 40% with complete response (CR) (Blood 2017; 130: 3160). The combination of bortezomib, lenalidomide, and dex (VRd) is also effective in NDMM (Lancet 2017:389:519-27). Here, we report initial data from a Phase Ib study of ISA plus VRd in pts with NDMM (NCT02513186). Methods: Pts with NDMM ineligible for transplantation were treated in 2 phases: induction and maintenance. Induction phase (four 6-week cycles [C]): ISA (10 mg/kg) on Day (D) 1, 8, 15, 22, 29 (C1), followed by D1, 15, 29 (C2-4); bortezomib (1.3 mg/m2) on D1, 4, 8, 11, 22, 25, 29, 32 (C1-4); lenalidomide (25 mg/day): D1-14 and D22-35 (C1-4); dex (20 mg/day): D1, 2, 4, 5, 8, 9, 11, 12, 15, 22, 23, 25, 26, 29, 30, 32, 33. Maintenance phase (4-week cycles): ISA (10 mg/kg) on D1, 15 (all cycles); lenalidomide (25 mg/day): D1-21 (all cycles); dex (40 mg): D1, 8, 15, 22 (all cycles), unless the pt was >75 years of age, then the dose was 20 mg. The primary objective was to evaluate safety and preliminary efficacy (overall response rate [ORR] and CR rate, [IMWG criteria]) of ISA plus VRd. Minimal residual disease (MRD) was evaluated using next generation sequencing (NGS) and flow cytometry (NGF) at a sensitivity of 10-6 in pts achieving VGPR or above. Here, we report results from a protocol-planned interim analysis. Results: All 22 pts were included in the safety analysis (pts who received ≥1 dose of ISA) and 14 were eligible for preliminary efficacy analyses (first 14 pts who completed the 4 induction cycles). Median age was 71 (range 63-77) years. At study entry, 6, 12, and 1 pt were International Staging System Stage I, II, and III, respectively. One pt had extramedullary plasmacytoma at baseline. At data cut-off (Mar 22, 2018), the median number of cycles was 5.5 (1-9). Three pts discontinued treatment (2 VGPR, 1 not efficacy-evaluable): 2 pts due to adverse event (AE); Grade (Gr) 3 infusion reaction (IR) (ISA-related; Gr 3 dyspnea, Gr 2 glottic edema, Gr 2 nasal edema, and Gr 2 generalized rash), and Gr 5 bacteremia (lenalidomide- and dex-related); and 1 pt withdrew consent; 19 (86%) pts are continuing treatment. Dose reduction of bortezomib, lenalidomide, and dex was required in 6 (29%), 4 (16%), and 5 (28%) pts, respectively. TEAEs occurred in 19 (86%) pts. Most frequent TEAEs (any Gr; excluding laboratory abnormalities) were constipation (10 pts [46%]), IRs and peripheral edema (9 pts [41%] each), asthenia, diarrhea, and peripheral sensory neuropathy (8 pts [36%] each), hypotension (7 pts [32%]), fatigue and respiratory tract infection (6 pts [27%] each), cough and dyspnea (5 pts [23%] each). Gr ≥3 AEs were reported in 10 (46%) and serious AEs (SAEs) in 4 (18%) pts. Treatment-related SAEs occurred in 2 (9%) pts (IR and pancreatitis). IRs were Gr 1/2 in all but 1 (5%) pt (Gr 3). Gr 3/4 laboratory hematologic abnormalities: lymphopenia (8/22), neutropenia (4/22), thrombocytopenia (4/22)VGPR, 1 partial response (PR) and 1 pt with stable diseaseMedian time to first response was 1.4 months (end of C1) and, with a median follow-up of 7.49 months (at cut-off date), no pt has progressed, with all except 3 pts continuing on therapy. Five (38.5%) of 13 pts achieved MRD-negative status (by NGF and NGS, or NGS only). Conclusion: These data suggest that ISA plus VRd followed by ISA plus Rd is well tolerated with a high ORR of 93%. All responders had VGPR or CR except 1 pt with PR. Quality of CR may have been underestimated due to ISA interference which could be resolved with an interference assay. Funding: Sanofi Disclosures Ocio: Janssen: Consultancy, Honoraria; AbbVie: Consultancy; BMS: Consultancy; Pharmamar: Consultancy; Takeda: Consultancy, Honoraria; Seattle Genetics: Consultancy; Amgen: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria; Sanofi: Research Funding; Mundipharma: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Array Pharmaceuticals: Research Funding. Rodriguez Otero:Celgene: Consultancy, Honoraria, Research Funding; Takeda: Consultancy; Janssen: Consultancy, Honoraria; Clínica Universidad de Navarra: Employment; Bristol Myers Squibb: Research Funding. Bringhen:Amgen: Honoraria, Other: Advisory Board; Celgene: Honoraria; Bristol-Myers Squibb: Honoraria; Janssen: Honoraria, Other: Advisory Board; Takeda: Consultancy. Oliva:Celgene: Honoraria; Amgen: Honoraria; Takeda: Honoraria. Attal:Amgen: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janseen: Consultancy, Research Funding; Sanofi: Consultancy. Moreau:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kanagavel:Sanofi: Employment, Equity Ownership. Fitzmaurice:Sanofi: Employment, Equity Ownership. Wu:Sanofi: Employment, Equity Ownership. Martinez Lopez:Janssen: Research Funding, Speakers Bureau; Bristol Myers Squibb: Research Funding, Speakers Bureau; Novartis: Research Funding, Speakers Bureau; Celgene: Research Funding, Speakers Bureau.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3268-3268
Author(s):  
Martha Q. Lacy ◽  
Kah-Whye Peng ◽  
Stephen J. Russell ◽  
Amylou C. Dueck ◽  
Mrinal M. Patnaik ◽  
...  

Abstract Background: We previously reported successful treatment of myeloma with an oncolytic virus, MMV-NIS. Preexisting immunity against measles made use of that virus unsatisfactory. The Indiana strain of Vesicular Stomatitis Viruses (VSV) are being developed as anticancer drugs for the treatment of a variety of malignancies. To ensure tumor selective replication and spread, we designed the VSV to encode interferon beta. Expression of IFNβ also serves as a STING agonist to activate host immunity against the cancer. The sodium iodide symporter (NIS) is inserted as a reporter gene into the viral genome to enable noninvasive monitoring of viral spread using PET/CT imaging. We report a Phase I clinical trial of intravenous administration of VSV-IFNβ-NIS for relapsed hematological malignancies including MM, AML, and TCL. Methods: Arm A consisted of patients with low tumor burden. Arm B included patients with high tumor burden. Both arms consisted of a classical 3+3 phase I trial, starting at 5x10^9 TCID50 (dose level 1) through 5x10^11 TCID50 (dose level 4), given as a single IV dose. In order to obviate potential toxicity from high interferon levels, Arm B received ruxolitinib 15 mg twice daily for 10 days beginning on day -1. The primary objective was determining the maximum tolerated dose (MTD) of VSV-IFNβ-NIS alone and in combination with ruxolitinib; secondary objectives include estimating the safety profile and preliminary efficacy. Correlative objectives include monitoring the pharmacodynamics of viral replication through SPECT/CT imaging with NIS gene, viremia, virus shedding, changes in the immune profile of peripheral blood leukocytes, and immunohistochemistry for immune cell infiltrates in tumors. Adverse events (AEs) are reported herein based on CTCAE v4 with the exception of cytokine release syndrome (CRS) which is based on Lee (Blood 2014; 124(2):188-195) criteria. Results: To date, 10 patients have received IV VSV-IFNβ-NIS; 8 in Arm A and 2 in Arm B. In Arm A, 3 patients were treated at dose level 1, 3 at dose level 2 and 2 at dose level 3. At dose level 1, there were three grade 3 hematologic AEs (neutropenia [1], lymphopenia [2]), and no grade 3+ non-hematologic AEs. At dose level 2, there were two grade 3 hematologic AEs (anemia [1], lymphopenia [1]), and two grade 3 non-hematologic AEs (nausea [1], dehydration [1]). A grade 2 CRS by Lee criteria was also observed. At dose level 3, 2 patients have been enrolled and data are maturing for DLT evaluation. In Arm B (VSV + rux), 2 patients have been enrolled and data are maturing for dose limiting toxicity (DLT) evaluation. Other grade 1 and 2 toxicities have included fever, hypertension, headache, electrolyte abnormalities, nausea, vomiting, transient elevation of liver function tests and creatinine. All grade 1 and 2 toxicities resolved within 72 hours. Among the 6 patients evaluable for response, there was one partial remission (TCL patient treated at dose level 2), and 5 with progressive disease. Multiple cytokines increased at 4h post infusion of virus, but most returned to baseline levels by 24h.Viremia was detectable in all patients at the end of infusion, and to varying levels at 30 mins, 1, 2, 4, 24, 48h or 72 hours post virus infusion. No persistent viremia was observed. No infectious virus was recovered in buccal swabs or urine and neutralizing anti-VSV antibodies were present by day 29. Extensive immune phenotyping and ELIspot assays for shared antigens are ongoing. Conclusion: In the lowest dose levels tested to date, VSV-IFNβ-NIS has not led to any observed dose limiting toxicity. Dose escalation is ongoing and updated results will be reported. Disclosures Lacy: Celgene: Research Funding. Peng:Vyriad: Equity Ownership. Russell:Vyriad: Equity Ownership. Dueck:Bayer: Employment; Phytogine: Employment; Pfizer: Honoraria. Witzig:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Dispenzieri:Celgene, Takeda, Prothena, Jannsen, Pfizer, Alnylam, GSK: Research Funding. Gertz:spectrum: Consultancy, Honoraria; Physicians Education Resource: Consultancy; Ionis: Honoraria; janssen: Consultancy; Medscape: Consultancy; celgene: Consultancy; Apellis: Consultancy; Prothena: Honoraria; Amgen: Consultancy; annexon: Consultancy; Abbvie: Consultancy; Research to Practice: Consultancy; Teva: Consultancy; Alnylam: Honoraria. Dingli:Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.; Millennium Takeda: Research Funding; Alexion Pharmaceuticals, Inc.: Other: Participates in the International PNH Registry (for Mayo Clinic, Rochester) for Alexion Pharmaceuticals, Inc.; Millennium Takeda: Research Funding. Kapoor:Celgene: Research Funding; Takeda: Research Funding. Al-Kali:Novartis: Research Funding. Naik:Vyriad: Equity Ownership. Kumar:AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; KITE: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Research Funding; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 305-305
Author(s):  
David Siegel ◽  
Donna M Weber ◽  
Constantine S. Mitsiades ◽  
Meletios A. Dimopoulos ◽  
Jean-Luc Harousseau ◽  
...  

Abstract Abstract 305 Background: Multiple myeloma (MM), the second most common hematologic malignancy, remains incurable despite recent therapeutic advances. Treatment of patients with relapsed and refractory MM is extremely challenging and represents a specific unmet medical need. However, novel treatment combinations have the potential to improve patient outcomes. Vorinostat, an oral inhibitor of Class I and II histone deacetylase enzymes, enhances the anti-MM activity of other pro-apoptotic agents, providing potential synergy in combination with lenalidomide and dexamethasone. This Phase I, multicenter, open-label, non-randomized, dose-escalation study evaluated vorinostat plus lenalidomide and dexamethasone in patients with relapsed or refractory MM. Aims: The primary objective was to determine the maximum tolerated dose (MTD); secondary objectives included overall safety and tolerability, and evaluation of clinical activity. Methods: Patients aged ≥18 years with relapsed or refractory MM were enrolled sequentially into 1 of 5 escalating dosing levels (Table) using a standard 3+3 design for ≤8 cycles. Patients who were tolerating, and receiving clinical benefit from, the regimen were allowed to continue into the extension phase of the study. In the absence of dose-limiting toxicities (DLTs) in the first cycle, dose escalation continued until the MTD was established. In the event that the MTD was not established, dose level 5 would become the maximum administered dose (MAD) and an additional 8 patients would be enrolled in an expansion cohort to confirm safety. Response to treatment was assessed using modified European Group for Blood and Marrow Transplantation (EBMT) criteria with the overall response rate (ORR) defined as minimal or greater, and all adverse events (AEs) recorded. Results: Of 28 patients assessed for safety to date, all have experienced ≥1 AE, with 24 (87.5%) patients experiencing a total of 65 drug-related AEs overall, the majority of which were mild or moderate in severity. The most common drug-related AEs were diarrhea (n=12, 42.9%), fatigue (n=10, 37.5%), neutropenia (n=10, 37.5%), and thrombocytopenia (n=10, 37.5%). A total of 21 serious AEs, 8 of which were identified by the investigator as being related to study treatment, were reported in 13 (46.4%) patients. Three patients discontinued due to AEs. DLT evaluation is complete and there were no DLTs that prohibited dose escalation. One DLT, Grade 3 diarrhea lasting <48 hours, was observed at dose level 5. As per the protocol, this dose level was expanded to 6 patients in total and no further DLTs were observed. Therefore, the MTD has not yet been reached and dose level 5 is the MAD. Of 25 patients evaluable for efficacy, 21 (84%) experienced clinical benefit while on treatment. Best responses to vorinostat combined with lenalidomide and dexamethasone, defined by modified EBMT criteria, include: 1 complete response (CR), 1 near CR, 2 very good partial responses (VGPR), 8 partial responses (PR), 4 minimal responses (MR), 5 stable disease (SD), and 4 progressive disease (PD), for an ORR of 64%. Twelve of the 13 patients who have received prior lenalidomide therapy were evaluable for response; best responses in these patients included VGPR (n=1), PR (n=3), MR (n=1), SD (n=3); while 4 of these patients progressed. Of the 13 patients who remain on the study, 9 out of 11 (82%) evaluable patients have responded. To date, 10 out of 28 patients have discontinued due to PD. Summary/conclusions: These preliminary data suggest that vorinostat combined with lenalidomide and dexamethasone may represent a convenient oral combination therapy that is active and generally well tolerated in the treatment of relapsed/refractory MM. In addition, these results indicate that this combination may exhibit activity in patients who have received prior lenalidomide therapy. The study continues to further characterize the tolerability profile and efficacy of this combination. Disclosures: Siegel: Celegne: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Off Label Use: Vorinostat is a histone deacetylase (HDAC) inhibitor that was approved in the FDA in October 2006 for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma (CTCL) who have progressive, persistent, or recurrent disease on or following two systemic therapies. Weber:Milleninum: Research Funding, Speakers Bureau; Celgene: Research Funding, Speakers Bureau; Merck: Research Funding, unpaid advisory board. Mitsiades:Millennium: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis Pharmaceuticals: Research Funding; Pharma Mar: licensing royalties. Dimopoulos:MSD: Honoraria; Celgene: Honoraria. Harousseau:Janssen Cilag: Ad Board, Honoraria; Celgene: Ad Board, Honoraria; Novartis: Honoraria. Rizvi:Merck: Employment, Equity Ownership. Howe:Merck: Employment, Equity Ownership. Reiser:Merck: Employment, Equity Ownership. Byrne:Celgene Corporation: Employment, Equity Ownership. Anderson:Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Speakers Bureau; Millennium: Consultancy, Honoraria, Speakers Bureau. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Keryx: Membership on an entity's Board of Directors or advisory committees; Gentium: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees; Merck: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2089-2089 ◽  
Author(s):  
Mark Kirschbaum ◽  
Ivana Gojo ◽  
Stuart L. Goldberg ◽  
Lisa Kujawski ◽  
Ehab Atallah ◽  
...  

Abstract Abstract 2089 Poster Board II-66 Introduction: Although the introduction of epigenetic therapies, such as the DNA methyltransferase inhibitor (DNMT) decitabine, has improved options for the treatment of myeloid malignancies, use is limited by sub-optimal response rates. Therefore, there remains a need for more effective treatment strategies to improve outcomes in AML/MDS. Preclinical and clinical data suggest that broadening epigenetic targeting by adding histone deacetylase (HDAC) inhibitors to DNMTs may improve responses. In addition, it has been reported that outcomes may differ according to the sequence in which HDAC and DNMT inhibitors are combined. Aim: Here we present preliminary data from a Phase I, open-label, multicenter, dose-escalating study, designed to determine the maximum-tolerated dose (MTD) and recommended Phase II dose of the HDAC inhibitor vorinostat combined either concurrently or sequentially with decitabine in patients (pts) with AML/MDS. Other endpoints include tolerability and exploratory assessments of activity. Methods: Pts (≥18 years) with intermediate-high risk MDS, relapsed/refractory AML, or untreated AML (≥60 years; unsuitable for standard chemotherapy), with an ECOG performance status of ≤2, were enrolled into one of six dosing levels (Table) and received treatment for up to 24 months or until disease progression (PD). Results: As of August 3, 2009, 72 pts have entered the study: median age was 68 years (range 18-85) and 58% were male. To date, 69 pts have discontinued due to PD/lack of efficacy (n=37), withdrawal of consent (n=12), adverse events (AEs) (n=16), physician decision (n=3), and protocol deviation (n=1). Of 70 pts evaluable for safety, 69 experienced AEs, the majority of which were Grade 1/2 in severity and included nausea (n=48), diarrhea (n=41), fatigue (n=36), constipation (n=32), and vomiting (n=28). 62 (89%) pts experienced treatment-related AEs and 17 (24%) pts experienced treatment-related serious AEs. 14 deaths occurred during the study, although none were related to study treatment. One dose-limiting toxicity, prolonged QT interval, was documented in dose level 3a. Combinations of vorinostat and decitabine in the schedules in this protocol did not reach MTD. As per protocol, dose levels 3 and 3a were the maximum administered doses and have been expanded. Of the 61 pts evaluable for response, 11 had MDS, 25 had relapsed/refractory AML, and 25 had untreated AML. In pts with MDS receiving concurrent therapy (n=5), complete remission (CR) was achieved in 2 pts, stable disease (SD) in 1 pt, partial remission (PR) in 1 pt, hematologic improvement (HI) in 1 pt; all 6 of the pts who received sequential treatment experienced SD. In pts with relapsed/refractory AML receiving concurrent therapy (n=12), CR was achieved in 1 pt, CR without recovery of counts (CRi) in 1 pt, HI in 1 pt, SD in 6 pts, while 3 pts had PD; in those receiving sequential therapy (n=13), SD was achieved in 9 pts while 4 had PD. In pts with untreated AML receiving concurrent therapy (n=12), CR was achieved in 4 pts, CRi in 1 pt, PR in 1 pt, and SD in 6 pts, and in those receiving sequential therapy (n=13), CR was achieved in 2 pts, CRi in 2 pts, PR in 1 pt, HI in 2 pts, and SD in 5 pts. Overall, CR or CRi was achieved by 18% pts with MDS, 8% with relapsed/refractory AML, and 36% with untreated AML; and HI was reported in 9% pts with MDS, 4% with relapsed/refractory AML, and 8% with untreated AML. Conclusion: These preliminary data indicate that the combination of vorinostat with decitabine, either concurrently or sequentially, is possible without significant toxicity. In addition, the combination shows promising activity in MDS and untreated AML. Disclosures: Kirschbaum: Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celegene: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Off Label Use: Vorinostat is a histone deacetylase (HDAC) inhibitor that was approved in the FDA in October 2006 for the treatment of cutaneous manifestations in patients with cutaneous T-cell lymphoma (CTCL) who have progressive, persistent, or recurrent disease on or following two systemic therapies. Goldberg:Merck: Research Funding. Marks:Merck: Research Funding. Di Gravio:Merck: Employment, Equity Ownership. Pyle:Merck: Employment, Equity Ownership. Rizvi:Merck: Employment, Equity Ownership. Issa:Eisai: Consultancy, Research Funding; Celegene: Research Funding; MGI Pharma: Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1951-1951 ◽  
Author(s):  
Paul Richardson ◽  
Donna Weber ◽  
Constantine S. Mitsiades ◽  
Meletios A. Dimopoulos ◽  
Jean-Luc Harousseau ◽  
...  

Abstract Abstract 1951 Background: Although novel treatment combinations for multiple myeloma (MM) have improved outcomes, the disease remains incurable and new drug combinations are urgently needed. Vorinostat is an oral histone deacetylase inhibitor approved in the United States for treatment of patients (pts) with advanced cutaneous T-cell lymphoma who failed prior therapies. Vorinostat alters gene expression and protein activity, promoting MM cell death through multiple pathways, and has been shown in preclinical studies to synergistically enhance the anti-MM activity of bortezomib and immunomodulatory drugs, including lenalidomide, with or without dexamethasone. Aims: The primary objective of this Phase I study was to determine the maximum tolerated dose (MTD) of vorinostat plus lenalidomide and dexamethasone in pts with relapsed or relapsed and refractory MM. Secondary objectives included overall safety, tolerability, response rate, duration of response, and time to progression (TTP). Methods: Pts in this Phase I multicenter open-label study were sequentially enrolled into 1 of 5 escalating doses of the combination regimen using a standard 3 + 3 design for ≤8 cycles. Pts who tolerated treatment and experienced clinical benefit were eligible for enrollment in an extension phase. Toxicity was evaluated using the National Cancer Institute Common Terminology Criteria (version 3.0). Response was assessed using the modified European Group for Blood and Marrow Transplantation criteria and International Myeloma Working Group Uniform Criteria. Safety and efficacy data were analyzed using summary statistics, except for TTP, which was estimated by the Kaplan-Meier method. Results: As of July 15, 2010, 31 pts were treated and evaluable for toxicity; 4 pts remain on study. Most pts had received prior thalidomide (n=22; 71%), bortezomib (n=20; 65%), or lenalidomide (n=14; 45%), with a median of 4 prior therapies (range, 1–10). The patient population contained both high-risk and low-risk pts, based on cytogenetic and/or fluorescence in situ hybridization analyses. Most adverse events (AEs) were mild or moderate in severity. The most common grade ≥3 treatment-related AEs, experienced by 19 (61%) pts, were neutropenia (26%), thrombocytopenia (16%), diarrhea (13%), anemia (10%), and fatigue (10%); 8 pts discontinued due to toxicity. One dose-limiting toxicity (grade 3 diarrhea lasting >48 h) was observed at the maximum assessed dose (level 5), but MTD was not reached (Table) and there were no treatment-related deaths. Among 30 pts evaluable for response, the median TTP was 32 weeks (5 mo), and 4 pts remain on study as of the data cutoff date; 26 of 30 pts (87%) have achieved at least stable disease (SD). Best single responses included 2 complete responses, 3 very good partial responses (VGPR), 11 partial responses (PR), and 5 minimal responses (MR), with 5 pts achieving SD and 4 developing progressive disease, resulting in an overall response rate (ORR; PR or better) of 53%. Of 13 evaluable pts who had previously received lenalidomide, a best single response of SD or better was observed in 9 (69%; 2 VGPR, 3 PR, 1 MR, 3 SD), resulting in a 38% ORR. Notably, SD or better (2 PR, 1 MR, 3 SD) was observed in 60% of 10 evaluable pts who were relapsed, refractory, or intolerant to previous lenalidomide-containing regimens. Conclusions: Preliminary data from this Phase I study suggest that vorinostat plus lenalidomide and dexamethasone is a convenient and generally well-tolerated regimen with promising activity for relapsed or relapsed and refractory MM. The MTD for this combination was not reached. Importantly, responses were observed in pts who had received prior lenalidomide, bortezomib, and thalidomide. Further evaluation of this regimen is planned in future trials. Disclosures: Richardson: Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees. Off Label Use: Vorinostat, Lenalidomide, and Dexamethasone for treatment in Multiple Myeloma. Weber:Novartis-unpaid consultant: Consultancy; Merck- unpaid consultant: Consultancy; Celgene- none for at least 2 years: Honoraria; Millenium-none for 2 years: Honoraria; Celgene, Millenium, Merck: Research Funding. Mitsiades:Millennium: Consultancy, Honoraria; Novartis Pharmaceuticals: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Merck & Co.: Consultancy, Honoraria; Kosan Pharmaceuticals: Consultancy, Honoraria; Pharmion: Consultancy, Honoraria; Centrocor: Consultancy, Honoraria; PharmaMar: Patents & Royalties; OSI Pharmaceuticals: Research Funding; Amgen Pharmaceuticals: Research Funding; AVEO Pharma: Research Funding; EMD Serono: Research Funding; Sunesis: Research Funding; Gloucester Pharmaceuticals: Research Funding; Genzyme: Research Funding. Dimopoulos:MSD: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Harousseau:Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Houp:Merck Research Laboratories: Employment. Graef:Merck Research Laboratories: Employment. Gause:Merck Research Laboratories: Employment. Byrne:Celgene Corporation: Employment, Equity Ownership. Anderson:Millennium Pharmaceuticals: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Onyx: Consultancy; Merck: Consultancy; BMS: Consultancy; Acetylon: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Siegel:Celgene and Millennium: Advisory Board, Speakers Bureau; Merck: Advisory Board.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4775-4775 ◽  
Author(s):  
Christoph Heuck ◽  
Yogesh Jethava ◽  
Rashid Z Khan ◽  
Scott Miller ◽  
Alan Mitchell ◽  
...  

Abstract Background: Diagnostic and therapeutic advances have significantly improved the outcomes for multiple myeloma (MM) patients. However, pts who are refractory to or relapse after therapy with immune modulatory drugs and proteasome inhibitors remain a therapeutic challenge. Comprehensive genomic profiling via clinical next generation sequencing (NGS)-based assays studies of MM cases have revealed multiple targetable mutations that were previously unexploited in MM. Methods: Between June 2013 and May 2014 we performed genomic profiling of 351 patients who had progressed after initial therapy to assist physicians in therapy planning. Comprehensive genomic profiling was performed using the FoundationOne¨ or FoundationOne Heme¨ assays. FoundationOne assays 374 cancer-related and 24 frequently rearranged genes via DNA-seq, and FoundationOneHeme assays 405 cancer-related and 31 frequently rearranged genes via DNA-seq as well as 265 frequently rearranged genes by RNA-seq. All samples were sequenced in a CLIA-certified CAP-accredited laboratory to an average depth >500x . Patients with activating alterations of KRAS, NRAS or BRAF were considered for therapy with the targeted agent trametinib (TMTB) as were patients who had a gene expression signature suggesting activation of the MAPK pathway. Retrospective review of this case series was approved by the UAMS institutional review board. Results: We identified 63 patients who underwent treatment with Trametinib. 60 were treated based on activating mutations of KRAS, NRAS or BRAF and 3 were treated based on a GEP signature. The median age was 65 and patients had a median of 5 lines of prior therapy (range 1-20). 38 of 63 patients had prior treatment with Total Therapy. 43 underwent salvage with chemotherapy prior to initiation of TMTB, 15 had salvage transplants, 33 patients were exposed to novel agents (Pomalidomide, Carfilzomib) and 33 had Metronomic therapy before TMTB. 25% of patients were ISS stage 3 and 37% had GEP70 defined high risk. 13 had PET defined extra medullary disease (EMD). 41 patients were administered TMTB monotherapy and 22 received TMTB treatment in combination with other agents. In general the treatment was well tolerated. 10 patients discontinued therapy because of toxicities, 29 discontinued because of disease progression or death. None of the deaths were attributed to TMTB, Best treatment responses were SD in 30, PR in 8, VGPR in 2 and CR in 3 of the 63 pts. For 25 patients with evaluable PET data, treatment resulted in complete resolution of FDG avid lesions in 9 patients and a better than 50% reduction in 15 (Figure 1). We will present updated data on clinical responses as well as toxicities. Conclusions: Treatment with targeted therapy guided by prospective comprehensive genomic profiling across all classes of genomic alterations in this heavily pretreated population of MM patients resulted in an unexpectedly high objective response rate. Observation of CR with TMTB monotherapy further supports continued investigation of this individualized approach to MM management. Disclosures Van Laar: Signal Genetics: Employment, Equity Ownership. Ali:Foundation Medicine, Inc.: Employment, Equity Ownership. Miller:Foundation Medicine, Inc: Employment. Zangari:Norvartis: Membership on an entity's Board of Directors or advisory committees; Onyx: Research Funding; Millennium: Research Funding. van Rhee:Millenium: Speakers Bureau; Sanofi: Speakers Bureau; Celgene: Speakers Bureau; Janssen: Speakers Bureau. Morgan:Celgene Corp: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Myeloma UK: Membership on an entity's Board of Directors or advisory committees; International Myeloma Foundation: Membership on an entity's Board of Directors or advisory committees; The Binding Site: Membership on an entity's Board of Directors or advisory committees; MMRF: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3026-3026 ◽  
Author(s):  
Jesús F. San-Miguel ◽  
Vania T.M. Hungria ◽  
Sung-Soo Yoon ◽  
Meral Beksac ◽  
Meletios A. Dimopoulos ◽  
...  

Abstract Introduction: Panobinostat is a potent pan-deacetylase inhibitor (pan-DACi) that targets key aberrations in multiple myeloma (MM) cell biology, including epigenetics and protein metabolism. In the phase 3 clinical trial PANORAMA 1, panobinostat in combination with bortezomib and dexamethasone (PAN-BTZ-Dex) led to a statistically significant and clinically relevant increase in progression-free survival of approximately 4 months compared with that with placebo plus bortezomib and dexamethasone (Pbo-BTZ-Dex). Further analyses of patient outcomes by prior treatment demonstrated that the magnitude of PFS benefit was greatest among patients who received at least 2 prior regimens, including bortezomib and an immunomodulatory drug (IMiD; PAN-BTZ-Dex [n = 73]: 12.5 months [95% CI, 7.3-14.0 months]; Pbo-BTZ-Dex [n = 74]: 4.7 months (95% CI, 3.7-6.1 mo; HR 0.47 [95% CI, 0.32-0.72]). These data supported the regulatory approvals of PAN-BTZ-Dex for the treatment of patients with multiple myeloma who received at least 2 prior regimens, including bortezomib and an IMiD. Here we present the final analysis of overall survival (OS) for the entire patient population and among patients who received at least 2 prior regimens, including bortezomib and an IMiD. Methods: The study design for the PANORAMA 1 trial was described previously (San-Miguel. Lancet Oncol. 2014;15:1195-206). The key secondary endpoint was OS. As of June 29, 2015, the 415 events required to conduct the final analysis of OS had been observed. Kaplan-Meier estimation was utilized for OS analyses for the entire population (N = 768), the pre-specified subgroup of patients who received prior bortezomib and IMiD (n = 193), and patients who received at least 2 prior regimens including bortezomib and an IMiD (n = 147). Results: The median OS of patients who received PAN-BTZ-Dex in the overall population was 40.3 months (95% CI, 35.0-44.8 months) vs 35.8 months (95% CI, 29.0-40.6 months) for the Pbo-BTZ-Dex arm with HR 0.94 [95% CI, 0.78-1.14], P = .5435 (Fig 1A). The percentage of patients in each arm who received post-study therapy was 37.7% in the PAN-BTZ-Dex arm and 48.8% in the Pbo-BTZ-Dex arm. The median OS of patients who received at least 2 prior lines, including bortezomib and an IMiD, was 25.5 months (95% CI, 19.6-34.3 months) in the PAN-BTZ-Dex arm vs 19.5 months (95% CI, 14.1-32.5 months) in the Pbo-BTZ-Dex arm (Fig. 1B). The proportion of patients in this subgroup who received post-study therapy was 35.6% in the PAN-BTZ-Dex arm and 66.2% in the Pbo-BTZ-Dex arm. Conclusion: For the overall PANORAMA 1 study population, patients in the PAN-BTZ-Dex arm demonstrated an increase in median OS of 4.5 months vs patients in the Pbo-BTZ-Dex arm, but this result was not statistically significant (P = .5435). Median OS was also slightly longer for the PAN-BTZ-Dex arm among the more heavily pretreated subgroup of patients who received at least 2 prior regimens, including bortezomib and an IMiD. A higher percentage of patients on the Pbo-BTZ-Dex arm received post-study therapy vs the PAN-BTZ-Dex arm, which may have confounded the OS results. In summary, PAN-BTZ-Dex demonstrates statistically significant increases in PFS vs Pbo-BTZ-Dex in patients with relapsed or relapsed and refractory MM; however, this did not translate to a statistically significant increase in OS. Future trials will plan to focus on further optimization of dose and schedule of panobinostat and bortezomib to improve outcome, as well as novel combinations with other agents, including IMiDs and next-generation proteasome inhibitors. Figure 2. Figure 2. Disclosures Beksac: Bristol-Myers Squibb: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Consultancy, Speakers Bureau. Dimopoulos:Janssen: Honoraria; Janssen-Cilag: Honoraria; Onyx: Honoraria; Amgen: Honoraria; Genesis: Honoraria; Celgene: Honoraria; Novartis: Honoraria. Jedrzejczak:Onconova: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Siritanaratkul:Pfizer: Research Funding; Roche: Research Funding; Novartis: Research Funding; Janssen-Cilag: Research Funding. Schlossman:Millennium: Consultancy. Hou:Novartis: Membership on an entity's Board of Directors or advisory committees. Moreau:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium: Honoraria, Membership on an entity's Board of Directors or advisory committees. Lonial:Bristol-Myers Squibb: Consultancy, Research Funding; Millennium: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Onyx: Consultancy, Research Funding; Celgene: Consultancy, Research Funding. Sopala:Novartis Pharma: Employment, Equity Ownership. Bengoudifa:Novartis: Employment. Corrado:Novartis: Employment, Equity Ownership. Richardson:Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Millennium Takeda: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document