Serum Metabolite Profiles Are Reflective of Iron Overload in Thalassemia Major Patients on Chelation Therapy

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2112-2112
Author(s):  
Farzana Sayani ◽  
Niloufar Abdolmohammadi ◽  
Anne Marie Lauf ◽  
Aalim Weljie

Abstract Abstract 2112 Introduction: Iron overload (IO) either through blood transfusions or increased gastrointestinal absorption is associated with organ dysfunction and increased morbidity and mortality in patients with various hematological disorders including thalassemia. Despite improved methods of iron load detection and chelation therapy, patients still continue to be at risk for iron-associated toxicities. Methods for predicting IO include serum ferritin, liver iron content by MRI, and cardiac MRI T2*. Limited information is available regarding the effects of IO on the different metabolic systems in the liver and heart, which may change with chelation therapy. Different chelators, including deferoxamine (DFO), deferiprone (DFP) and deferasirox (DFX), chelate iron at different rates and effectiveness from the liver and heart. The liver is involved in maintenance of glucose and lipid homeostasis, and iron-triggered injury increases secondary metabolites including triacylglycerols and glucose. IO alters the stability of hepatic and myocardial lysosomal membranes releasing higher levels of lysosomal enzymes in liver compared to heart in animal models. These and other metabolic pathways have not been studied extensively in iron-overloaded patients. The new technology of metabolomics allows for the concurrent measurement and analysis of multiple metabolites and has the potential to provide more valuable information on the metabolic systems affected by iron overload that could have clinical relevance. Aim: To determine if novel metabolomics technologies can identify specific metabolites and pathways affected by iron overload including energy, carbohydrate, and lipid metabolism. Methods: In this pilot project, we included twelve iron overloaded patients (thalassemia major N=7, thalassemia intermedia N=2, hemoglobin H disease N=2, pure red cell aplasia N=1) (age > 18 years) and 12 sex and age-matched controls. Clinical parameters including age, sex, chelator therapy, pre-transfusion hemoglobin, serum ferritin, liver iron content, and cardiac MRI T2* were collected on patient samples. The metabolite profile on fasting serum samples was analyzed in triplicate using gas chromatography-mass spectrometry (GC-MS) along with MetaboliteDetector a software. Significant metabolites were identified using multivariate regression analysis by supervised projection methods (two-way orthogonal partial least squares discriminant analysis, O2PLS-DA) using Simca-P (Umetrics). Results: A total of 291 analytes were detected and quantified for each samples by GC-MS metabolomics. Clear differences were detected in serum metabolite profiles between patients with iron overload and control samples (p = 0.03) (Figure 1). Metabolite differences between the two groups consisted of amino acids, their breakdown products, and sugars. Multivariate regression analysis showed correlation between the different metabolite profiles and diagnosis of thalassemia major (p = 0.02). No significant differences were seen comparing age, sex, pre-transfusion hemoglobin, serum ferritin, LIC, and cardiac MRI T2*. There was a non-significant but detectable difference observed in the metabolic profile of the 3 patients on combination therapy with DFO and DFP (p<0.3) suggesting possible differences related to the presence DFP. Conclusion: We conclude that metabolomics is a valid and useful tool to detect differences in the iron-associated metabolic changes in iron overloaded patients, specifically, thalassemia major. Combination therapy with DFO and DFP has a possibly different metabolic profile compared to other chelators. Further work is needed to delineate the specific metabolic changes due to iron chelation, specifically, effects on oxidative damage, as chelation therapy is known to reduce the levels of non-transferrin bound iron and reactive oxygen species. A larger sample size may also be needed to further detect any metabolite differences in relation to organ iron load. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5415-5415
Author(s):  
Sandra Regina Loggetto ◽  
Mônica Veríssimo ◽  
Antônio Fabron Júnior ◽  
Giorgio Roberto Baldanzi ◽  
Nelson Hamerschlak ◽  
...  

Abstract Introduction: Cardiac failure is a main cause of morbidity and mortality in patients with thalassemia major (TM) who are receiving regular blood transfusion due to iron overload. So, effective and adequate iron chelation is extremely important. Deferoxamine (DFO), the most widely used iron chelator, has poor compliance. Combined therapy with Deferiprone (DFP) increases chelation efficacy, decreases iron-induced complications, improves compliance increasing survival in thalassemia. Objectives: Assessment of efficacy and safety in combined chelation with DFP and DFO in thalassemic patients with iron overload. Methods and results: We have 50 thalassemia major patients in 4 Brazilian Centers (Boldrini Hospital, Sao Paulo Hematology Center, HEMEPAR and FAMEMA) receiving combined chelation therapy with follow up to three years. DFP (75–100 mg/kg/daily) and DFO (30–60 mg/kg, 4–7 days/week) are being administered during one to three years. Median age of this group is 21,5 y/o (range 8–35), with 48% female. Median age to start regular transfusions was 12 months (range 2–140) and to begin chelation therapy was 57 months (range 17–216). All patients were screened for Hepatitis C and 26% had positive sorology and/or PCR. Statistical analysis were made with Spearman test and Fisher test. All patients, except two, did cardiac and liver MRI in the initial phase of the study, resulting in 60,5% with cardiac iron overload (T2*&lt;20ms), being severe in 31,2%. Assessment of liver iron concentration (LIC) showed 95,7% with liver iron overload (&gt;3ug/g dry weight), being severe in 17,4%. During follow up, only 43 patients (86%) was screened with MRI. From these, 67,4% had cardiac iron overload (severe in 32,5%) and 78,6% had liver iron overload (severe in 11,9%). Mean serum ferritin before and after three years were 3095,7 ±1934,5 ng/ml and 2373,9±1987,6 ng/ml, respectively. Our data showed positive correlation between serum ferritin, LIC and ALT, even in initial data and after combined chelation therapy (p&lt;0,001), but there is no correlation between cardiac T2* and LIC and between cardiac T2* and ferritin. DFP adverse events included 8% agranulocytosis, 22% neutropenia, 20% arthralgia and 38% gastric intolerance. DFO adverse events were 2,6% deafness, 2,0% cataract and 12% growth deficit. Hepatic toxicity was found in 6%, but without necessity to stop treatment. Compliance in this group was excellent in 48%, good in 22% and poor in 30%. Conclusions: This is the first multicenter study to evaluate combined chelation therapy in Brazil based on cardiac MRI and LIC. Most patients had cardiac and hepatic iron overload probably because they began iron chelation lately, due to difficult access to iron chelators in the past. Cardiac iron overload didn’t have correlation with ferritin and LIC and these data need more understanding. Age of initial regular blood transfusion, increased transfusional requirement, inadequate chelation or delayed chelation may play a role in this question. Combined therapy with DFO and DFP is effective to decrease serum ferritin and LIC. Follow up and improving compliance may decrease cardiac iron overload. Adverse events are similar to literature. Combined therapy is safety in TM patients with transfusional iron overload.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4905-4905 ◽  
Author(s):  
Mohamed A Yassin ◽  
Abdulqadir Nashwan ◽  
Nancy Kassem ◽  
Ashraf Tawfiq Soliman ◽  
Vincenzo De Sanctis ◽  
...  

Abstract Thalassemia major (TM) requires chronic blood transfusions ultimately cause iron overload and subsequently end-organ damage unless corrected. Iron chelation has been proven to decrease organ dysfunction and improve survival in transfusion-dependent β-thalassemia. However, taking iron chelation therapy every day has sometimes been a challenge in patients. Deferasirox is a once-daily, oral iron chelator that developed out of a need for a long-acting chelator. The approved mode of administration requires taking deferasirox on an empty stomach with water, apple juice, or orange juice to limit variation in bioavailability. This required administration schedule might not be palatable for patients. Additionally, approximately one-quarter of patients experience mild to moderate gastrointestinal symptoms, which may pose additional challenges. Jadenu is a new oral formulation of Exjade tablets for oral suspension. While Exjade is a dispersible tablet that must be mixed in liquid and taken on an empty stomach ,Jadnu can be taken in a single step, with or without a light meal, simplifying administration of treatment and allows greater convenience and may be associated with fewer gastrointestinal side effects versus the original formulation. This may significantly improve compliance. In addition, the new formulation may be associated increased bioavailability. Jadenu is 36% more bioavailable than the original formulation, Exjade®. Therefore, to convert from Exjade to Jadenu the dose of Jadenu should be about 30% lower, rounded to the nearest whole tablet. To date, the new formulation of deferasirox has only been evaluated in pharmacokinetic studies in healthy volunteers. No clinical data are available yet in patients taking this formulation. The objective of this study was to compare the effect of Jadenu substituting Exjade on serum Ferritin concentration, liver iron content and biochemical profile in (BTM) patients with iron overload. Patients and Methods: Twelve adult patients with BTM were studied. All patients were on regular packed cell transfusion therapy monthly to keep their Hb not less than 9 g/dl before transfusion. They were on Exjade therapy (30 mg/kg per day) for 5 years or more before changing them to Jadenu therapy (14-28mg/kg/day). We evaluated Serum ferritin and the liver iron (LIC) measured by the Ferriscan method. Investigations included measuring hepatic functions (alanine transferase (ALT), aspartate transferase (AST), alkaline phosphatase (ALP) and albumin) , creatinine and fasting blood glucose (FBG) every clinic visit (q 3 months). In addition thyroid function (free T4 (FT4), thyrotropin (TSH), 25 OH vitamin D and PTH levels were measured before and one year after starting Jadenu therapy. Patients were monitored for gastrointestinal and other reported side-effects related to the drugs. All patients were on vitamin D 800 U/day and folic acid 5 mg / day. Paired t student test was used to compare lab results before versus after Jadenu treatment. Linear regression equation was used to investigate possible relation between variables. Results A year after treating patients with Jadenu serum ALT decreased (non-significant) but there was no significant change in circulating concentrations of creatinine, albumin, ALP or FBG. (Table 1) Apart from some gastrointestinal complaints reported in 3 patients that did not require discontinuation of therapy, patients did not have any other side effects. There was a non-significant decrease in LIC and ferritin levels after 1 year of using Jadenu. Thyroid and parathyroid hormone did not change during Jadenu therapy. (Table 2) A positive significant correlation was found between serum ferritin level and LIC measured by ferriscan method. LIC and serum ferritin level were correlated significantly with ALT level ( r = 0.31 and 0.45 respectively, p < 0.05) . No significant correlation was detected between LIC and other biochemical or hormonal levels. This study showed that the use of Jadenu after Exjade was associated with non-significant decrease in liver iron and ALT. There was no change in FBG, creatinine albumin or thyroid function. No side effects required discontinuation of the medicine. Conclusion: Jadenu is more palatable and improve quality of life for patients with BTM, however it was associated with minimal decrease in LIC and ALT level suggesting marginal improvement of iron chelation probably due to easier administration. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 10 ◽  
pp. e2018062 ◽  
Author(s):  
Vincenzo De Sanctis

Abstract. Introduction: Chronic blood transfusion is the mainstay of care for individuals with β-thalassemia major (BTM). However, it causes iron-overload that requires monitoring and management by long-term iron chelation therapy in order to prevent endocrinopathies and cardiomyopathies, that can be fatal. Hepatic R2 MRI method (FerriScan®) has been validated as the gold standard for evaluation and monitoring liver iron concentration (LIC) that reflects the total body iron-overload. Although adequate oral iron chelation therapy (OIC) is promising for the treatment of transfusional iron-overload, some patients are less compliant with it and others suffer from long-term effects of iron overload. Objective: The aim of our study was to evaluate the prevalence of endocrinopathies and liver dysfunction, in relation to LIC and serum ferritin level, in a selected group of adolescents and young adult BTM patients with severe hepatic iron overload (LIC from 15 to 43 mg Fe/g dry weight). Patients and Methods: Twenty-four selected BTM patients with severe LIC, due to transfusion-related iron-overload, followed at the Hematology Section, National Center for Cancer Care and Research, Hamad Medical Corporation of Doha (Qatar), from April 2015 to July 2017, were retrospectively evaluated. The prevalence of short stature, hypogonadism, hypothyroidism, hypoparathyroidism, impaired fasting glucose (IFG), diabetes, and adrenal insufficiency was defined and assessed according to the International Network of Clinicians for Endocrinopathies in Thalassemia (ICET) and American Diabetes Association criteria. Results: Patients have been transfused over the past 19.75 ± 8.05 years (ranging from 7 to 33 years). The most common transfusion frequency was every 3 weeks (70.8%).  At the time of LIC measurements, the mean age of patients was 21.75 ± 8.05 years, mean LIC was 32.05 ± 10.53 mg Fe/g dry weight (range: 15 to 43 mg Fe/g dry weight). Their mean serum ferritin level was 4,488.6 ± 2,779 µg/L. The overall prevalence of growth failure was 26.1% (6/23), IFG was 16.7% (4/24), sub-clinical hypothyroidism was 14.3% (3/21), hypogonadism was 14.3% (2/14), diabetes mellitus was 12.5% (3/24), and biochemical adrenal insufficiency was 6.7% (1/15). The prevalence of hepatitis C positivity was 20.8% (5/24). No case of clinical hypothyroidism, adrenal insufficiency or hypoparathyroidism was detected in this cohort of patients. The prevalence of IFG impaired fasting glucose was significantly higher in BTM patients with very high LIC (>30 mg Fe/g dry liver) versus those with lower LIC (p = 0.044). LIC was correlated significantly with serum ferritin levels (r = 0.512; p = 0.011), lactate dehydrogenase (r = 0.744; p = 0.022) and total bilirubin (r = 0.432; p = 0.035). Conclusions: A significant number of BTM patients, with high LIC and endocrine disorders, still exist despite the recent developments of new oral iron chelating agents. Therefore, physicians’ strategies shall optimize early identification of those patients in order to optimise their chelation therapy and to avoid iron-induced organ damage. We believe that further studies are needed to evaluate if serial measurements of quantitative LIC may predict the risk for endocrine complications. Until these data are available, we recommend a close monitoring of endocrine and other complications, according to the international guidelines.  


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3825-3825
Author(s):  
Nelson Hamerschlak ◽  
Laercio Rosemberg ◽  
Alexandre Parma ◽  
Fernanda F. Assir ◽  
Frederico R. Moreira ◽  
...  

Abstract Magnetic Ressonance Imaging (MRI) using T2 star (T2*) tecnique appears to be a very useful method for monitoring iron overload and iron chelation therapy in thalassaemia. In Brazil, we have around 400 thalassaemic major patients all over the country. They were treated with hipertransfusion protocols and desferroxamine and/or deferiprone chelation. We developed a cooperative program with the Brazilian Thalassaemic Patients Association (ABRASTA) in order to developT2* tecnique in Brazil to submit brazilian patients to an annual iron overload monitoring process with MRI.. We performed the magnetic ressonance T2* using GE equipment (GE, Milwaukee USA), with validation to chemical estimation of iron in patients undergoing liver biopsy. Until now, 60 patients were scanned, median age=23,2 (12–54); gender: 18 male (30%) and 42 female (70%). The median ferritin levels were 2030 ng/ml (Q1=1466; Q3=3296). As other authors described before, there was a curvilinear inverse correlation between iron concentration by biopsy, liver T2*(r=0,92) and also there were a correlation with ferritin levels. We also correlated myocardial iron measured by T2* with ventricular function.. As miocardial iron increased, there was a progressive decline in ejection fraction and no significant correlation was found between miocardial T2* and the ferritin levels. Liver iron content can be predicted by ferritin levels. On the other hand, cardiac disfunction is the most important cause of mortality among thalassaemic patients. Since Miocardio iron content cannot be predicted from serum ferritin or liver iron, and ventricular function can only detect those with advance disease, intensification and combination of chelation therapy, guided by T2* MRI tecnique should reduce mortality from the reversible cardiomyopathy among thalassaemic patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5423-5423 ◽  
Author(s):  
John B Porter ◽  
Antonio Piga ◽  
Alan Cohen ◽  
John M Ford ◽  
Janet Bodner ◽  
...  

Abstract Background: Maintaining serum ferritin (SF) levels below 1000 ng/mL has been reported to predict longer survival and a reduced risk of complications (eg heart failure) in patients with thalassemia major. Experience with deferoxamine (Desferal®, DFO) has indicated that the toxicity of DFO may increase as SF levels decrease. A target SF value in the deferasirox clinical trials was not specified per protocol, but was determined by the individual investigators. This analysis evaluates the safety of deferasirox (Exjade®) in a cohort of adult and pediatric patients with transfusion-dependent anemias and iron overload from two large clinical trials (107 and 108) who were chelated to SF levels &lt;1000 ng/mL. Methods: In core studies 107 and 108, frequently-transfused patients with chronic anemias ≥2 years old received deferasirox 5–30 mg/kg/day for 1 year. Eligible patients were then enrolled in 4-year extension trials, where initial dosing was based on the end of core study liver iron concentration; dose adjustments were based on SF levels. Patients eligible for this analysis had an initial SF ≥1000 ng/mL. Patients who achieved a SF level &lt;1000 ng/mL on ≥2 consecutive visits, any time after starting deferasirox, were identified. The number of days when SF was &lt;1000 ng/mL was calculated for each patient. AEs in these patients were calculated for the entire period on deferasirox, and for the period following the first SF measurement of &lt;1000 ng/mL, irrespective of future SF levels. Results: 474 patients were included in this analysis: underlying anemias were β-thalassemia (n=379), myelodysplastic syndromes (n=43), Diamond-Blackfan anemia (n=30) and other anemias (n=22). Overall, 13.5% patients achieved SF&lt;1000 ng/mL in year 1, 18.6% in year 2, 25.7% in year 3, 32.5% in year 4 and 36.7% by the time of this analysis. Therefore, overall 174 patients (36.7%) reached a SF level &lt;1000 ng/mL on ≥2 consecutive visits, while in 300 patients SF levels remained ≥1000 ng/mL. The median period for a SF value &lt;1000 ng/mL was 149 days [range 18–1726]. Patient demographics, baseline characteristics and safety profiles of the two groups throughout deferasirox treatment are shown in Table 1. At month 54, median SF levels in the &lt;1000 and &gt;1000 ng/mL groups were 872 and 2118 ng/mL, respectively. The incidence of drug-related AEs (gastrointestinal, renal and liver) did not appear to increase during the periods after SF levels first decreased below 1000 ng/mL (data not shown). Table 1. Demographics, baseline characteristics and safety profile of patients who achieved SF levels &lt;1000 ng/mL and patients who did not Patients who achieved SF &lt;1000 ng/mL Patients who did not achieve SF &lt;1000 ng/mL *Investigator-assessed; SCr, serum creatinine; ULN, upper limit of normal; ALT, alanine aminotransferase n 174 300 Male:female 85:89 145:155 Mean age ± SD, years 23.8 ± 16.7 23.5 ± 18.2 &lt;16, n (%) 65 (37.4) 123 (41.0) ≥16, n (%) 109 (62.6) 177 (59.0) Enrolled from study 107:108 120:54 175:125 Median exposure to deferasirox, months 56.3 45.2 Mean actual deferasirox dose, mg/kg/day 20.3 22.9 Median baseline SF, ng/mL 1791 2883 Drug-related AEs* (≥5% in either group), n (%) Nausea 26 (14.9) 38 (12.7) Diarrhea 17 (9.8) 42 (14.0) Vomiting 14 (8.0) 25 (8.3) Abdominal pain 12 (6.9) 32 (10.7) Upper abdominal pain 6 (3.4) 20 (6.7) Rash 9 (5.2) 16 (5.3) Audiological abnormalities 7 (4.0) 4 (1.3) Ophthalmological abnormalities 4 (2.3) 5 (1.7) Two consecutive SCr increases &gt;33% above baseline and above ULN 26 (14.9) 36 (12.0) Increase in ALT &gt;10×ULN on at least 1 visit 12 (6.9) 20 (6.7) Baseline levels elevated 6 (3.4) 16 (5.3) Conclusions: Over the core and extension phases of these clinical studies, the safety profile of patients achieving SF levels &lt;1000 ng/mL was similar to that observed in patients who did not achieve SF levels &lt;1000 ng/mL. There was also no apparent increase in AEs associated with a decrease in SF levels &lt;1000 ng/mL. In particular, no increase in the proportion of patients with creatinine increases &gt;33% above baseline and ULN or with ALTs &gt;10×ULN were observed in these patients. These findings suggest that ironoverloaded patients can be safely chelated with deferasirox to low SF levels.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4270-4270
Author(s):  
Antonios Kattamis ◽  
Konstantinos Stokidis ◽  
Theoni Petropoulou ◽  
Dimitra Kyriacopoulou ◽  
Polyxeni Delaporta ◽  
...  

Abstract Abstract 4270 Background: Recent advances in the treatment of iron overload in patients with transfusion- dependent thalassemia have dramatically changed iron related morbidity and mortality. Intensive chelation therapy by using combination therapy or monotherapy at high doses had led to total clearing of the iron in many patients. The best approach for chelation treatment in patients with low levels of iron overload is debatable. Patients and Methods This study included all the patients with thalassemia major with minimal liver iron overload, followed in our unit. More precisely, to be eligible for this observational study, the patients needed to have liver iron concentration (LIC) <1.5 mg Fe/gram dry weight tissue, defined by MRI, and to have at least a subsequent MRI evaluation after this time. The mean observation time, which was the time between the two MRIs, was 16.9±5.2 months. Results Fourty five patients (22 females, 30 non-splemectomized, 21 HCV seropositive, mean age: 31±5.6 years) have reached minimal levels of iron overload in any time point after 2004. Thirty one of them have been treated with combined therapy of desferrioxamine (DFO) and deferiprone (DFP) and 5, 6 and 3 with monotherapy of deferasirox (DFX), DFP and DFO, respectively. After reaching these levels, 42% of the patients changed therapy, with the most frequent change being from combined therapy to monotherapy (15 patients). Baseline ferritin levels at the time of the first MRI range from 43 to 4336 ng/ml (median 230 ng/ml) and they were not affected by spleen, gender or HCV status. Baseline LIC (mean 1.2 ± 1.7 mgFe/g.d.w.) correlated well with ferritin levels (Spearman's rho = 0.47, p<0.005), as did ferritin changes to LIC changes (Spearman's rho = 0.67, p<0.005). The results on the follow up evaluation, stratified according to the actual treatment, are shown in the table Deferiprone was less efficacious in controlling both LIC and ferritin levels compared to combination therapy (p=0.016 and 0.031, respectively). Fifteen out of 17 patients treated with DFP showed an increase in LIC, despite using the recommended dose. Six out of 9 patients treated with DFX, most at a low dose, showed an increase in LIC. There were no differences in changes in the cardiac parameters (LVEF, cardiac T2*) in between treatment groups. The efficiency of DFP and DFX, which represents the ratio of iron excreted to the theoretical maximum of iron that could be bound by the chelators, was calculated at 1.8±0.9 % and 15.2 ± 3.6 %, respectively. Conclusions Current iron chelation therapy regimens are able to render iron load-free many patients with thalassemia major. As iron accumulation from transfusions continues, a fine balance needs to be found in which neither worsening of iron overload nor toxicity from excessive dose of iron chelators will occur. This study showed that at low levels of iron overload both combination therapy and DFX can control iron accumulation, whether monotherapy with DFP may be insufficient to achieve iron balance in many patients. The dose of the chelators needs to be adjusted according to the needs and the clinical course of the patients, which can be predicted by the trend of the ferritin levels. Furthermore, it should be kept in mind that at low levels of iron overload, the iron chelators' efficiency may be lower than previously described. Disclosures: Kattamis: NOVARTIS ONCOLOGY: Honoraria, Research Funding, Speakers Bureau; APOPHARMA: Honoraria. Ladis:NOVARTIS ONCOLOGY: Honoraria, Research Funding; APOPHARMA: Honoraria, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 559-559 ◽  
Author(s):  
Mohsen Saleh Elalfy ◽  
Yasser Wali ◽  
S Tony ◽  
Ahmed Samir ◽  
Amira Adly

Abstract Background Patients with severe iron overload may require a more rapid and efficient therapy for reduction in iron burden than what can be provided with chelation monotherapy. Combined chelation using deferoxamine (DFO) and deferiprone (DFP) is widely used to treat such patients, but the inconvenience of parenteral administration of DFO reduces the effectiveness of this regimen in many patients. Minimal data are available on the safety and efficacy of combined two orally active chelator agents. Aim To compare the safety, efficacy, compliance, treatment satisfaction, and quality of life (QoL) associated with two combination chelation regimens: DFP and DFO versus DFP and deferasirox (DFX). Methods This was a randomized, open-label trial registered as (NCT01511848) conducted at 2 treatment centers in patients aged 10 to 18 years with β-thalassemia major and severe iron overload (serum ferritin > 2500 μg/ L on chelation monotherapy, with 50% uptrend over the last 12 months). Patients were randomly allocated to one of two 12-month treatment regimens. All patients received DFP at a dose of 75 mg/kg/day, divided into 2 doses taken orally at 8 am and 3 pm. Those in Arm 1 additionally received DFO at a dose of 40 mg/kg/d delivered via subcutaneous infusion pump, starting at 10 pm, while those in Arm 2 additionally received a dose of DFX 20 mg/kg/d, taken orally at 10 pm. The primary efficacy endpoints were the difference between treatment groups in the change from baseline to 12 months of serum ferritin (SF) levels, liver iron concentration (LIC), and cardiac MRI. Secondary efficacy endpoints were the change from baseline to 12 months in QoL, using the Medical Outcomes Study Short Form health survey (SF-36). Serum ferritin was measured every 3 months, and liver and cardiac MRI T2* assessments were conducted every 6 months. Changes in all 3 measures were compared using 2-way ANOVA for repeated measures. The safety endpoint was the occurrence of serious adverse events during the study period. In addition, patients had complete blood count every 2 weeks, and monthly detailed clinical examinations that included blood sampling for serum creatinine, albumin/creatinine ratio, and liver function tests. Audiometric and ophthalmological assessments were conducted at baseline and 12 months. Assessments of compliance and of patient-reported outcomes (PROs) were assessed at weeks 424 and at end of study. Results A total of 96 patients were randomized. The arms were comparable with respect to baseline demographics, with a mean age of 14.9±1.8 years in Arm 1 and 15.1±1.9 years in Arm 2 (p=0.27), and with 65.2% males in Arm 1 and 66.6% males in Arm 2 (p=0.76). Forty of 46 patients (87%) in Arm 1 and 46 of 48 patients (92%) in Arm 2 completed all 12 months of treatment. Reasons for discontinuation were skin infection and pain at infusion sites in Arm 1,and decrease in SF < 1000 μg/ L in Arm 2. Efficacy findings: Table 1 shows the changes in SF, LIC, and cardiac MRI values at baseline and at completion of 1 year on therapy. Safety findings: No serious adverse events were reported during the study in either treatment group. The number of adverse effects reported was comparable in both arms. Compliance: Treatment compliance was significantly higher in Arm 2 than in Arm 1(95% vs. 80%, respectively<0.001). Satisfaction: Significantly more patients in Arm 2 than in Arm 1 reported being satisfied with treatment at both 6 months (92% vs. 64%, respectively; p<0.001) and 12 months (88% vs. 59%, respectively; p<0.001). QoL: Improvement in QoL was seen in significantly more patients in Arm 2 than in Arm 1 (85% vs. 60%, respectively; p<0.001). Conclusion Data from this randomized prospective study show that while both forms of combination therapy, DFP with DFX and DFP with DFO, were effective in reducing iron overload in multi-transfused β-thalassemia major, patients who received DFP and DFX showed a higher decline in serum ferritin, greater improvement in cardiac T2*, higher treatment satisfaction, better compliance, and more improvement in QoL than did patients who received DFP and DFO, with no increased toxicity. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Alaa Mutter Jabur Al-Shibany ◽  
AalanHadi AL-Zamili

Patients with transfusion dependent thalassemia major is often associated with iron overload. Proper use of iron chelators to treat iron overload requires an accurate measurement of iron levels. Magnetic resonance T2-star (T2* MRI) is the preferred method to measure iron level in the liver andthe heart. The goal of our study was to see if there is an association exists between serum ferritin level and T2* MRI results in patients with beta thalassemia major.This study was done in Al-Diwaniya Thalassemia center,Maternity and children teaching hospital,Iraq. During the period from 1st of January to 31st of October. Fifty eight patients with a diagnosis of beta thalassemia major were enrolled in the study. They were older than five years old,transfusion dependent and on chelation therapy. Hepatic and Myocardial T2*MRI and the mean serum ferritin levels were measured during the study period for all patients.There is a significant correlation was observed between serum ferritin level and cardiac T2*MRI (p=0.018 ). also a significant correlation was observed between serum ferritin and hepatic T2*MRI (p=0.02). Neither cardiac T2* MRI nor hepatic T2* MRI show any correlation with the mean age.our study also showa positive correlation between the patients withcardiac T2* MRI and the development of diabetes mellitus in contrast to hepatic T2* MRI in which there is no any correlation. Hypothyroidism was observedno correlation with either cardiac or hepatic T2* MRI.Our results showed a positiveassociation between hepatic, cardiac T2*MRI and serum ferritin levels.


Sign in / Sign up

Export Citation Format

Share Document