Regulation of FANCL by Glycogen Synthase Kinase-3beta Links the Fanconi anemia pathway to Self Renewal and Survival Signals

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1263-1263
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Jane E. Yates ◽  
Brieanna Brown ◽  
Juha Rantala ◽  
...  

Abstract Abstract 1263 The molecular basis for how a Fanconi anemia (FA) genetic background contributes to hematopoietic stem cell defects and hypoplastic organ development remains poorly understood. Protein modification by ubiquitination is a mechanism that diversifies the function and regulation of proteins. In light of this, we focus on the dysfunction of FANCL, the E3 ubiquitin ligase of the FA pathway, as a key molecular defect in Fanconi anemia. Here we report our studies investigating mechanisms of post-translational regulation of FANCL. We view these mechanisms as potential targets to augment the function of the FA core complex and correct hematopoietic stem cell defects. We provide evidence that FANCL is exquisitely regulated by ubiquitin-proteosome degradation. Ligase-inactive mutants (FANCL-C307A and -W341G) are less sensitive to this regulation, suggesting a role for auto-ubiquitination in directing lysine-48 polyubiquitination. This constitutive negative regulation of FANCL is partially reversed with an ATP-competitive glycogen synthase kinase-3beta (GSK-3beta) inhibitor. GSK-3beta is a serine/threonine kinase that phosphorylates proteins and marks them for ubiquitin-mediated proteolysis. Mitogenic and survival pathways, including Ras/MAPK and PI3K/Akt, negatively regulate GSK-3beta by serine-9 phosphorylation. We show that the regulation of FANCL by GSK-3beta is likely direct because FANCL and GSK-3beta co-immunoprecipitate in cell lysates and as GST-fusion proteins. To define the biochemical mechanisms of FANCL regulation, we generated N-terminal deletion mutants of FANCL and we show that the regulation of FANCL is dictated by a region at the N-terminus (aa1-78). Mutational analysis of FANCL (lysine to arginine) in this N-terminus region does not affect the overall protein level or ubiquitination of FANCL, suggesting that FANCL may be targeted for degradation by phosphorylation and/or in a complex with other proteins. The potential biological relevance of our findings, that FANCL is regulated by GSK-3beta is revealed in studies overexpressing constitutively active, myristoylated-Akt. This experimental condition increases FANCL protein levels and suggests a role for FANCL as a downstream effector of PI3K/Akt signaling. In turn, FANCL likely regulates non-canonical targets that alter the transcriptome profile favoring self-renewal and survival of hematopoietic stem cells. We recently published our studies identifying beta-catenin as one such downstream target (Blood 2012 Jul 12;120:323). Suppression of FANCL expression severely disrupts Wnt/beta-catenin signaling and expression of downstream Wnt-responsive targets MYC and CCND1. We also identified that GSK3B gene expression is approximately 5-fold higher in Fancc-deficient hematopoietic stem cells exposed to TNF-alpha compared to untreated cells or to wildtype cells with or without TNF-alpha. Our current studies show that inhibition of GSK-3beta preserves the number of murine Fancc-deficient hematopoietic stem cells exposed to TNF-alpha compared with no GSK-3beta inhibition. Taken together, we have accumulated evidence suggesting that GSK-3beta is a promising molecular target to improve the self-renewal and survival of FA hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.

2013 ◽  
Vol 24 (16) ◽  
pp. 2582-2592 ◽  
Author(s):  
Kim-Hien T. Dao ◽  
Michael D. Rotelli ◽  
Brieanna R. Brown ◽  
Jane E. Yates ◽  
Juha Rantala ◽  
...  

Fanconi anemia hematopoietic stem cells display poor self-renewal capacity when subjected to a variety of cellular stress. This phenotype raises the question of whether the Fanconi anemia proteins are stabilized or recruited as part of a stress response and protect against stem cell loss. Here we provide evidence that FANCL, the E3 ubiquitin ligase of the Fanconi anemia pathway, is constitutively targeted for degradation by the proteasome. We confirm biochemically that FANCL is polyubiquitinated with Lys-48–linked chains. Evaluation of a series of N-terminal–deletion mutants showed that FANCL's E2-like fold may direct ubiquitination. In addition, our studies showed that FANCL is stabilized in a complex with axin1 when glycogen synthase kinase-3β is overexpressed. This result leads us to investigate the potential regulation of FANCL by upstream signaling pathways known to regulate glycogen synthase kinase-3β. We report that constitutively active, myristoylated-Akt increases FANCL protein level by reducing polyubiquitination of FANCL. Two-dimensional PAGE analysis shows that acidic forms of FANCL, some of which are phospho-FANCL, are not subject to polyubiquitination. These results indicate that a signal transduction pathway involved in self-renewal and survival of hematopoietic stem cells also functions to stabilize FANCL and suggests that FANCL participates directly in support of stem cell function.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 76 ◽  
pp. e2
Author(s):  
Masanori Miyanishi ◽  
Kevin Kao ◽  
Taro Sakamaki ◽  
James Chen ◽  
Katsuyuki Nishi ◽  
...  

Cell Reports ◽  
2012 ◽  
Vol 2 (4) ◽  
pp. 964-975 ◽  
Author(s):  
Heather A. Himburg ◽  
Jeffrey R. Harris ◽  
Takahiro Ito ◽  
Pamela Daher ◽  
J. Lauren Russell ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S58
Author(s):  
Mohamed Eldeeb ◽  
Jonas Ungerbäck ◽  
Mikael Sigvardsson ◽  
David Bryder

2014 ◽  
Vol 42 (8) ◽  
pp. S61
Author(s):  
Yuko Tadokoro ◽  
Koji Eto ◽  
Hideo Ema ◽  
Satoshi Yamazaki ◽  
Akihiko Yoshimura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document