crispr screen
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 179)

H-INDEX

24
(FIVE YEARS 11)

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001490
Author(s):  
Annika Kratzel ◽  
Jenna N. Kelly ◽  
Philip V’kovski ◽  
Jasmine Portmann ◽  
Yannick Brüggemann ◽  
...  

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged—Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


2021 ◽  
Author(s):  
Garam Kim ◽  
Lisa Nakayama ◽  
Jacob A Blum ◽  
Tetsuya Akiyama ◽  
Steven Boeynaems ◽  
...  

Antisense oligonucleotide therapy targeting ATXN2, a gene in which mutations cause neurodegenerative diseases spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis, has entered clinical trials in humans. Additional methods to lower ataxin 2 levels would be beneficial not only in uncovering potentially cheaper or less invasive therapies, but also in gaining greater mechanistic insight into how ataxin 2 is normally regulated. We performed a genome-wide fluorescence activated cell sorting (FACS)-based CRISPR screen in human cells and identified multiple subunits of the lysosomal vacuolar ATPase (v ATPase) as regulators of ataxin 2 levels. We demonstrate that Etidronate, a U.S. Food and Drug Administration (FDA)-approved drug that inhibits the v ATPase, lowers ataxin 2 protein levels in mouse and human neurons. Moreover, oral administration of the drug to mice in their water supply and food is sufficient to lower ataxin-2 levels in the brain. Thus, we uncover Etidronate as a safe and inexpensive compound for lowering ataxin-2 levels and demonstrate the utility of FACS-based screens for identifying targets to modulate levels of human disease proteins.


2021 ◽  
Author(s):  
Ziva Pogacar ◽  
Kelvin Groot ◽  
Fleur Jochems ◽  
Matheus Dos Santos Dias ◽  
Ben Morris ◽  
...  

Discovering biomarkers of drug response and finding powerful drug combinations can support the reuse of previously abandoned cancer drugs in the clinic. Indisulam is an abandoned drug that acts as a molecular glue, inducing degradation of splicing factor RBM39 through interaction with CRL4DCAF15. Here, we performed genetic and compound screens to uncover factors mediating indisulam sensitivity and resistance. First, a dropout CRISPR screen identified SRPK1 loss as a synthetic lethal interaction with indisulam that can be exploited therapeutically by the SRPK1 inhibitor SPHINX31. Moreover, a CRISPR resistance screen identified components of the degradation complex that mediate resistance to indisulam: DCAF15, DDA1, and CAND1. Lastly, we show that cancer cells readily acquire spontaneous resistance to indisulam. Upon acquiring indisulam resistance, pancreatic cancer (Panc10.05) cells still degrade RBM39 and are vulnerable to BCL-xL inhibition. The better understanding of the factors that influence the response to indisulam can assist rational reuse of this drug in the clinic.


2021 ◽  
pp. canres.CAN-21-3908-A.2021
Author(s):  
Manuel C Scheidmann ◽  
Francesc Castro-Giner ◽  
Karin Strittmatter ◽  
Ilona Krol ◽  
Aino Paasinen-Sohns ◽  
...  

2021 ◽  
Author(s):  
Daniel Bsteh ◽  
Hagar F Moussa ◽  
Georg Michlits ◽  
Ramesh Yelagandula ◽  
Jingkui Wang ◽  
...  

Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. In addition, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we identified that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not associated with loss of repressive Polycomb chromatin modifications. Instead, loss of PDS5A leads to aberrant cohesin activity, ectopic insulation sites and specific reduction of ultra-long Polycomb loops. We infer that these loops are important for robust silencing at a subset of Polycomb target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.


2021 ◽  
Author(s):  
Hans M. Dalton ◽  
Raghuvir Viswanatha ◽  
Ricky Brathwaite ◽  
Jae Sophia Zuno ◽  
Stephanie E. Mohr ◽  
...  

AbstractPartial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually cause CDGs. While both in vivo models ostensibly cause ER stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joshua M. Dempster ◽  
Isabella Boyle ◽  
Francisca Vazquez ◽  
David E. Root ◽  
Jesse S. Boehm ◽  
...  

AbstractCRISPR loss of function screens are powerful tools to interrogate biology but exhibit a number of biases and artifacts that can confound the results. Here, we introduce Chronos, an algorithm for inferring gene knockout fitness effects based on an explicit model of cell proliferation dynamics after CRISPR gene knockout. We test Chronos on two pan-cancer CRISPR datasets and one longitudinal CRISPR screen. Chronos generally outperforms competitors in separation of controls and strength of biomarker associations, particularly when longitudinal data is available. Additionally, Chronos exhibits the lowest copy number and screen quality bias of evaluated methods. Chronos is available at https://github.com/broadinstitute/chronos.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Timothy Barry ◽  
Xuran Wang ◽  
John A. Morris ◽  
Kathryn Roeder ◽  
Eugene Katsevich

AbstractSingle-cell CRISPR screens are a promising biotechnology for mapping regulatory elements to target genes at genome-wide scale. However, technical factors like sequencing depth impact not only expression measurement but also perturbation detection, creating a confounding effect. We demonstrate on two single-cell CRISPR screens how these challenges cause calibration issues. We propose SCEPTRE: analysis of single-cell perturbation screens via conditional resampling, which infers associations between perturbations and expression by resampling the former according to a working model for perturbation detection probability in each cell. SCEPTRE demonstrates very good calibration and sensitivity on CRISPR screen data, yielding hundreds of new regulatory relationships supported by orthogonal biological evidence.


2021 ◽  
Vol 22 (23) ◽  
pp. 12777
Author(s):  
Takuya Tsujino ◽  
Kazumasa Komura ◽  
Teruo Inamoto ◽  
Haruhito Azuma

Prostate cancer (PCa) is one of the common malignancies in male adults. Recent advances in omics technology, especially in next-generation sequencing, have increased the opportunity to identify genes that correlate with cancer diseases, including PCa. In addition, a genetic screen based on CRISPR/Cas9 technology has elucidated the mechanisms of cancer progression and drug resistance, which in turn has enabled the discovery of new targets as potential genes for new therapeutic targets. In the era of precision medicine, such knowledge is crucial for clinicians in their decision-making regarding patient treatment. In this review, we focus on how CRISPR screen for PCa performed to date has contributed to the identification of biologically critical and clinically relevant target genes.


Sign in / Sign up

Export Citation Format

Share Document