scholarly journals Maintenance of Hematopoietic Stem Cells Through Regulation of Wnt and mTOR Pathways.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2309-2309
Author(s):  
Jian Huang ◽  
Peter S. Klein

Abstract Abstract 2309 Hematopoietic stem cells (HSCs) maintain the ability to self-renew and to differentiate into all lineages of the blood. The signaling pathways regulating hematopoietic stem cell (HSCs) self-renewal and differentiation are not well understood. We are very interested in understanding the roles of glycogen synthase kinase-3 (Gsk3) and the signaling pathways regulated by Gsk3 in HSCs. In our previous study (Journal of Clinical Investigation, December 2009) using loss of function approaches (inhibitors, RNAi, and knockout) in mice, we found that Gsk3 plays a pivotal role in controlling the decision between self-renewal and differentiation of HSCs. Disruption of Gsk3 in bone marrow transiently expands HSCs in a b-catenin dependent manner, consistent with a role for Wnt signaling. However, in long-term repopulation assays, disruption of Gsk3 progressively depletes HSCs through activation of mTOR. This long-term HSC depletion is prevented by mTOR inhibition and exacerbated by b-catenin knockout. Thus GSK3 regulates both Wnt and mTOR signaling in HSCs, with opposing effects on HSC self-renewal such that inhibition of Gsk3 in the presence of rapamycin expands the HSC pool in vivo. In the current study, we found that suppression of the mammalian target of rapamycin (mTOR) pathway, an established nutrient sensor, combined with activation of canonical Wnt/ß-catenin signaling, allows the ex vivo maintenance of human and mouse long-term HSCs under cytokine-free conditions. We also show that combining two clinically approved medications that activate Wnt/ß-catenin signaling and inhibit mTOR increases the number of long-term HSCs in vivo. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 117 (12) ◽  
pp. 3320-3330 ◽  
Author(s):  
Szabolcs Fatrai ◽  
Albertus T. J. Wierenga ◽  
Simon M. G. J. Daenen ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

Abstract The transcription factor signal transducer and activator of transcription 5 (STAT5) fulfills essential roles in self-renewal in mouse and human hematopoietic stem cells (HSCs), and its persistent activation contributes to leukemic transformation, although little molecular insight into the underlying mechanisms has been obtained. In the present study, we show that STAT5 can impose long-term expansion exclusively on human HSCs, not on progenitors. This was associated with an enhanced cobblestone formation under bone marrow stromal cells of STAT5-transduced HSCs. Hypoxia-induced factor 2α (HIF2α) was identified as a STAT5 target gene in HSCs, and chromatin immunoprecipitation studies revealed STAT5 binding to a site 344 base pairs upstream of the start codon of HIF2α. Lentiviral RNA interference (RNAi)–mediated down-modulation of HIF2α impaired STAT5-induced long-term expansion and HSC frequencies, whereas differentiation was not affected. Glucose uptake was elevated in STAT5-activated HSCs, and several genes associated with glucose metabolism were up-regulated by STAT5 in an HIF2α-dependent manner. Our studies indicate that pathways normally activated under hypoxia might be used by STAT5 under higher oxygen conditions to maintain and/or impose HSC self-renewal properties.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2325-2325
Author(s):  
Joseph Yusup Shin ◽  
Wenhuo Hu ◽  
Christopher Y. Park

Abstract Abstract 2325 Hematopoietic stem cells (HSC) can be identified on the basis of differential cell surface protein expression, such that 10 out of 13 purified HSC (Lin−c-Kit+Sca-1+CD150+CD34−FLK2−) exhibit long-term reconstitution potential in single-cell transplants. HSCs express c-Kit, and interactions between c-Kit and its ligand, stem cell factor, have been shown to be critical for HSC self-renewal; however, HSCs express a log-fold variation in c-Kit levels. We hypothesized that differing levels of c-Kit expression on HSCs may identify functionally distinct classes of HSCs. Thus, we measured the function and cellular characteristics of c-Kithi HSCs and c-Kitlo HSCs (defined as the top 30% and bottom 30% of c-Kit expressors, respectively), including colony formation, cell cycle status, lineage fates, and serial engraftment potential. In methylcellulose colony assays, c-Kithi HSCs formed 5-fold more colonies than c-Kitlo HSCs (P=0.01), as well as 4-fold more megakaryocyte colonies in vitro. c-Kithi HSC were 2.4-fold enriched for cycling cells (G2-S-M) in comparison to c-Kitlo HSC as assessed by flow cytometry in vivo (15.4% versus 6.4%, P=0.001). Lethally irradiated mice competitively transplanted with 400 c-Kitlo HSCs and 300,000 competitor bone marrow cells exhibited increasing levels of donor chimerism, peaking at a mean of 80% peripheral blood CD45 chimerism by 16 weeks post-transplantation, whereas mice transplanted with c-Kithi HSCs reached a mean of 20% chimerism (p<0.00015). Evaluation of the bone marrow revealed an increase in HSC chimerism from 23% to 44% in mice injected with c-Kitlo HSCs from weeks 7 to 18, while HSC chimerism decreased from 18% to 3.0% in c-Kithi HSC-transplanted mice (P<0.00021). Levels of myeloid chimerism in the bone marrow and peripheral blood were not significantly different during the first 4 weeks following transplantation between mice transplanted with c-Kithi or c-Kitlo HSCs, and evaluation of HSC bone marrow lodging at 24 hours post-transplantation demonstrated no difference in the number of c-Kithi and c-Kitlo HSCs, indicating that differential homing is not the reason for the observed differences in long-term engraftment. Donor HSCs purified from mice transplanted with c-Kithi HSC maintained higher levels of c-Kit expression compared to those from mice injected with c-Kitlo HSC by week 18 post-transplantation (P=0.01). Secondary recipients serially transplanted with c-Kithi HSC exhibited a chimerism level of 40% to 3% from week 4 to 8 post-secondary transplant, whereas chimerism levels remained at 6% in mice injected with c-Kitlo HSC. These results indicate that c-Kithi HSCs exhibit reduced self-renewal capacity compared with c-Kitlo HSCs, and that the differences in c-Kithi and c-Kitlo HSC function are cell-intrinsic. Analysis of transplanted HSC fates revealed that c-Kithi HSCs produced two-fold more pre-megakaryocyte-erythroid progenitors and pluriploid megakaryocytes compared to their c-Kitlo counterparts in vivo, suggesting a megakaryocytic lineage bias in c-Kithi HSC. Consistent with this finding, the transplanted c-Kithi HSC gave rise to 10-fold more platelets and reached a maximum platelet output two days earlier than c-Kitlo HSC. To determine the potential mechanisms underlying the transition from c-Kitlo to c-Kithi HSCs, we assessed the activity of c-Cbl, an E3 ubiquitin ligase known to negatively regulate surface c-Kit expression in a Src-dependent manner. Flow cytometric analysis revealed 6-fold more activated c-Cbl in freshly purified c-Kitlo HSC compared to c-Kithi HSC (P=0.02), suggesting that functional loss of c-Cbl increases c-Kit expression on c-Kitlo HSCs. Mice treated for nine days with Src inhibitors, which inhibit c-Cbl activity, experienced a 1.5-fold and 2-fold increase in the absolute number of c-Kithi HSCs (P=0.067) and megakaryocyte progenitors (P=0.002), respectively. Thus, c-Cbl loss likely promotes the generation of c-Kithi HSCs. In summary, differential expression of c-Kit identifies HSC with distinct functional attributes with c-Kithi HSC exhibiting increased cell cycling, megakaryocyte lineage bias, decreased self-renewal capacity, and decreased c-Cbl activity. Since c-Kitlo HSC represent a population of cells enriched for long-term self-renewal capacity, characterization of this cell population provides an opportunity to better understand the mechanisms that regulate HSC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 442-442
Author(s):  
Kana Miyamoto ◽  
Atsushi Hirao ◽  
Kiyomi Y. Araki ◽  
Fumio Arai ◽  
Kazuhito Naka ◽  
...  

Abstract Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state in bone marrow (BM). Quiescent stem cells show resistance to various stresses, suggesting that mechanisms for protection of HSC life from stress contribute to maintenance of self-renewal capacity through a whole life in animals. We hypothesized that a signaling pathway for regulating aging might be involved in stem cell functions. FOXO transcription factors belong to the forkhead family of transcriptional regulators characterized by a conserved DNA-binding domain termed “forkhead box”. In C.elegans, genetic analyses have revealed the existence of a conserved insulin-like signaling involved in longevity. Conservation of this pathways lead to speculation that forkhead transcriptional factor are involved in life span in mammals. It was known that active-state Foxo3a is localized in nucleus, and we found HSC-specific nuclear localization of Foxo3a by immunocytochemistric study, therefore we generated gene-targeted Foxo3a−/− mice to analyze roles of Foxo in HSC regulation. Peripheral blood count showed decreased number of red blood cells in Foxo3a−/− mice, but numbers of white blood cells and platelets were normal. In colony-forming assay, we detected the numbers and sizes of myeloid, erythroid and mixed colonies derived from Foxo3a−/− BM mononuclear cells were all normal. These results suggest that the proliferation and differentiation of Foxo3a−/− progenitors were normal. However, the number of colony-forming cells present in long-term culture of Foxo3a−/− c-kit+Sca-1+Lin− (KSL) cells with stroma was significantly reduced. The ability of Foxo3a−/− HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired, indicating that self-renewal capacity of HSCs was defective in Foxo3a−/− mice. To understand the mechanisms of this phenotypes, we evaluated the cell cycle status using BrdU (5-bromodeoxyuridine) incorporation but found no difference in Foxo3a+/+ and Foxo3a−/− progenitor cells. To directly evaluate HSC quiescence in Foxo3a−/− mice, we stained CD34−KSL cells with Pyronin Y. Although most Foxo3a+/+ CD34−KSL cells stained negatively for Pyronin Y, a sizable Pyronin Y+ population was detected among Foxo3a−/− CD34−KSL cells, demonstrating that loss of Foxo3a leads to a defect in the maintenance of HSCs quiescence. Since p38MAPK is selectively activated by environmental stress, we evaluated the activation status of p38MAPK in Foxo3a+/+ and Foxo3a−/− HSCs. Frequency of phosphorylated p38MAPK+ cells in Foxo3a−/−CD34−KSL cells was significantly increased than that of Foxo3a+/+CD34−KSL cells. Our results suggest that Foxo3a−/− HSCs subjected to tangible stress in vivo. Finally, we investigated the sensitivity of Foxo3a−/− mice to weekly 5-fluorouracil treatment in vivo. Although 60% of Foxo3a+/+mice survived for at least 4 weeks post-injection, all Foxo3a−/− mice were dead in 4 weeks. It suggests that Foxo3a protects hematopoietic cells from destruction by cell cycle-dependent myelotoxic agent. Taken together, our results demonstrate that Foxo3a plays a pivotal role in maintaining HSC quiescence and stress resistance.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 502-502
Author(s):  
Marisa M. Juntilla ◽  
Vineet Patil ◽  
Rohan Joshi ◽  
Gary A. Koretzky

Abstract Murine hematopoietic stem cells (HSCs) rely on components of the Akt signaling pathway, such as FOXO family members and PTEN, for efficient self-renewal and continued survival. However, it is unknown whether Akt is also required for murine HSC function. We hypothesized that Akt would be required for HSC self-renewal, and that the absence of Akt would lead to hematopoietic failure resulting in developmental defects in multiple lineages. To address the effect of Akt loss in HSCs we used competitive and noncompetitive murine fetal liver-bone marrow chimeras. In short-term assays, Akt1−/−Akt2−/− fetal liver cells reconstituted the LSK compartment of an irradiated host as well or better than wildtype cells, although failed to generate wildtype levels of more differentiated cells in multiple lineages. When placed in a competitive environment, Akt1−/−Akt2−/− HSCs were outcompeted by wildtype HSCs in serial bone marrow transplant assays, indicating a requirement for Akt1 and Akt2 in the maintainance of long-term hematopoietic stem cells. Akt1−/−Akt2−/− LSKs tend to remain in the G0 phase of the cell cycle compared to wildtype LSKs, suggesting the failure in serial transplant assays may be due to increased quiesence in the absence of Akt1 and Akt2. Additionally, the intracellular content of reactive oxygen species (ROS) in HSCs is dependent on Akt signaling because Akt1−/−Akt2−/− HSCs have decreased ROS levels. Furthermore, pharmacologic augmentation of ROS in the absence of Akt1 and Akt2 results in an exit from quiescence and rescue of differentiation both in vivo and in vitro. Together, these data implicate Akt1 and Akt2 as critical regulators of long-term HSC function and suggest that defective ROS homeostasis may contribute to failed hematopoiesis.


Blood ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 1214-1223 ◽  
Author(s):  
Cindy L. Miller ◽  
Vivienne I. Rebel ◽  
Cheryl D. Helgason ◽  
Peter M. Lansdorp ◽  
Connie J. Eaves

Abstract The results of previous studies have shown that the development of hematopoiesis during fetal life can occur in the absence of Steel factor (SF ) signaling. On the other hand, impairment of this mechanism can severely compromise the ability of cells from adult bone marrow to regenerate hematopoiesis on their transplantation into myeloablated recipients. This apparent paradox could result from changes during ontogeny in the responsiveness of hematopoietic stem cells to regulators that may substitute for SF as well as from differences in the availability of such factors during embryogenesis and in the myeloablated adult. To investigate these possibilities, we studied the effect of W41 and W42 mutations on the numbers, phenotype, and posttransplant self-renewal behavior of primitive hematopoietic cells present in the fetal liver (FL) of 14.5-day-old mouse embryos. In W41/W41 FL, day-12 spleen colony-forming units and long-term culture-initiating cells appeared both quantitatively and qualitatively similar to their counterparts in the FL of +/+ embryos. W41/W41 FL also contained near normal numbers (≈50% of controls) of transplantable lymphomyeloid stem cells with competitive reconstituting ability in myeloablated adult +/+ recipients (as assessed for up to at least 16 weeks posttransplant). Moreover, both the original phenotype of these W41/W41 competitive repopulating units (CRUs) and their clonal posttransplant output of mature progeny were normal. Similarly, when myeloablated adult +/+ mice were cotransplanted with 5 × 104 +/+ FL cells and a sevenfold to 70-fold excess of W41/W41 FL CRUs, the contribution of the +/+ FL CRUs to the circulating white blood cell count present 5 weeks later was markedly reduced as compared with that of mice that received only +/+ FL cells. However, over the next 3 months, the proportion of mature white blood cells that were derived from +/+ precursors increased significantly (P < .002) in all groups (to ≥30%), indicating that the ability to sustain hematopoiesis beyond 5 weeks is more SF-dependent than the ability to initially reconstitute both lymphoid and myeloid compartments. Cells from individual FL of W42/+ matings also showed an initial ability (at 7 to 8 weeks posttransplant) to competitively repopulate both lymphoid and myeloid compartments of myeloablated +/+ adult recipients. However, in contrast to recipients of normal or W41/W41 FL cells, the repopulation obtained with the W42 mutant stem cells was transient. Secondary transplants confirmed the inability of the W42 mutant cells to regenerate or even maintain a population of transplantable stem cells. Taken together with previous results from studies of CRUs in adult W mice, these findings support the concept of changes in the way hematopoietic stem cells at different stages of development respond to the stimulatory conditions evoked in the myeloablated recipient. In addition, they provide the first definitive evidence that SF is a limiting physiological regulator of sustained hematopoietic stem cell self-renewal in vivo.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2019 ◽  
Vol 116 (4) ◽  
pp. 1447-1456 ◽  
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Du Jiang ◽  
Irving L. Weissman

While the aggregate differentiation of the hematopoietic stem cell (HSC) population has been extensively studied, little is known about the lineage commitment process of individual HSC clones. Here, we provide lineage commitment maps of HSC clones under homeostasis and after perturbations of the endogenous hematopoietic system. Under homeostasis, all donor-derived HSC clones regenerate blood homogeneously throughout all measured stages and lineages of hematopoiesis. In contrast, after the hematopoietic system has been perturbed by irradiation or by an antagonistic anti-ckit antibody, only a small fraction of donor-derived HSC clones differentiate. Some of these clones dominantly expand and exhibit lineage bias. We identified the cellular origins of clonal dominance and lineage bias and uncovered the lineage commitment pathways that lead HSC clones to different levels of self-renewal and blood production under various transplantation conditions. This study reveals surprising alterations in HSC fate decisions directed by conditioning and identifies the key hematopoiesis stages that may be manipulated to control blood production and balance.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


2006 ◽  
Vol 103 (9) ◽  
pp. 3304-3309 ◽  
Author(s):  
C. J. Luckey ◽  
D. Bhattacharya ◽  
A. W. Goldrath ◽  
I. L. Weissman ◽  
C. Benoist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document