BTK Inhibition Targets in Vivo CLL Proliferation Through Its Effects On B-Cell Receptor Signaling Activity.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2903-2903
Author(s):  
Y. Lynn Wang ◽  
Shuhua Cheng ◽  
Jiao Ma ◽  
Ailin Guo ◽  
Pin Lu ◽  
...  

Abstract Abstract 2903 Purpose: Bruton tyrosine kinase (BTK) is a component of the B-cell receptor signaling pathway. Ibrutinib (previously known as PCI-32765), a first in class, covalent BTK inhibitor, has demonstrated significant clinical activity against CLL in early clinical trials. Understanding the molecular mechanisms of action would shed light on CLL pathophysiology and provide additional opportunities for the development of new therapies. Experimental Design: The anti-tumor activity of ibrutinib in CLL has been investigated previously using either an ex vivo approach or a mouse model (Herman et.al, Blood. 2011;117:6287–96 and Ponader et.al, Blood. 2012;119:1182–9). In this study, we have chosen, instead, a patient-oriented in vivo approach by using samples from an ongoing phase 1b trial of ibrutinib (NCT01105247). We prospectively collected serial samples from CLL patients (n=14) before and at several time points after the initiation of therapy and analyzed them for cellular and molecular signaling events. Results: We demonstrated that levels of the phosphorylated BTK protein (p-BTK) in CLL cells from treatment-naïve patients were significantly higher than in normal B cells, explaining why CLL cells are more susceptible to BCR inhibition than normal B cells. Response assessments, performed at the end of cycle 2 (∼Day 56), demonstrated nodal responses in all patients by CT scan. Ex vivo apoptosis did occur but required high concentrations of ibrutinib (>500 nM). In addition, in vivo apoptosis was rarely observed in serial peripheral blood samples collected from treated patients. With these serial samples, we found that the population of Ki67+ cells were gradually decreased over a 28-day ibrutinib treatment course. Using a newly established co-culture system that induces CLL proliferation in vitro, the analysis of several parameters, including Ki-67 expression, cell growth and bromodeoxyuridine (BrdU) incorporation (shown in the figure), revealed that the proliferation of CLL cells was directly inhibited by ibrutinib (200 nM). Furthermore, activities of BTK and downstream signaling events, such as the phosphorylation of PLCg2, AKT and ERK, were all suppressed over time in ibrutinib-treated patients. Conclusions: With primarily an in vivo approach, we have demonstrated that the blockage of cell proliferation was a major effect of ibrutinib against leukemic CLL cells. Blocking cell proliferation via inhibition of BTK-mediated signaling concurs with clinical responses in ibrutinib-treated CLL patients. Disclosures: Leonard: Pharmacyclics Inc.: Consultancy, Honoraria. Buggy:Pharmacyclics: Employment, Equity Ownership.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 15-15
Author(s):  
Daniel Trageser ◽  
Cihangir Duy ◽  
Lars Klemm ◽  
Tanja Gruber ◽  
Rahul Nahar ◽  
...  

Abstract Pre-B cells within the bone marrow are destined to die unless they are rescued through survival signals from the pre-B cell receptor. Studying the configuration of the immunoglobulin heavy chain locus (IGHM) in sorted human bone marrow pre-B cells by single-cell PCR, we detected a functional IGHM allele consistent with the expression of a functional pre-B cell receptor in the vast majority of normal human pre-B cells. However, only in 10 of 57 cases of BCR-ABL1-transformed pre-B cell-derived acute lymphoblastic leukemia (ALL), we detected a functional IGHM allele. While normal pre-B cells respond vigorously to pre-B cell receptor engagement by Ca2+ release, the pre-B cell receptor was unresponsive even in the few cases of BCR-ABL1-driven ALL, in which we amplified a productively rearranged IGHM allele. For this reason, we studied the function of the pre-B cell receptor during early B cell development and progressive transformation in a BCR-ABL1-transgenic mouse model: Interestingly, BCR-ABL1-transgenic mice that have not yet undergone leukemic transformation show almost normal pre-B cell receptor selection. In these pre-leukemic pre-B cells, however, expression of the BCR-ABL1-transgene is very low as compared to full-blown ALL, suggesting that high levels of BCR-ABL1 expression are not compatible with normal expression of the pre-B cell receptor. Consistent with our observations in human ALL, full-blown ALL clones in BCR-ABL1-transgenic mice show defective pre-B cell receptor selection and the pre-B cell receptors expressed on few leukemic cells are not functional. Treatment of leukemic mice with the BCR-ABL1 kinase inhibitor AMN107, however, reinstated normal pre-B cell receptor selection and pre-B cell receptor function within seven days. These data suggest that the transforming signal through BCR-ABL1 and normal survival signals through the pre-B cell receptor are mutually exclusive. To test whether functional pre-B cell receptor signaling prevents transformation by BCR-ABL1, we transformed murine pre-B cells carrying a deletion of the SLP65 gene, which is required for functional pre-B cell receptor signaling. Unlike SLP65-wildtype pre-B cells, SLP65−/− pre-B cells can be transformed by BCR-ABL1 at a high efficiency. Reconstitution of SLP65 using a retroviral vector, however, induced rapid cell death of BCR-ABL1-transformed pre-B cells. We next investigated the potential impact of Slp65-reconstitution on leukemic growth of BCR-ABL1-transformed pre-B cells from SLP65−/− mice in vivo. To this end, SLP65−/− BCR-ABL1-transformed pre-B cells were labeled with firefly-luciferase and then transduced with retroviral vectors encoding SLP65/GFP or GFP alone. NOD/SCID mice were sublethally irradiated and injected with either SLP65/GFP+ or GFP+ ALL cells. Engraftment as monitored by bioluminescence imaging was delayed by more than three weeks in mice injected with SLP65/GFP+ ALL cells as compared to mice injected with GFP+ ALL cells. 36 days after injection, the first mice that were inoculated with GFP-transduced leukemia cells, became terminally ill and also the other mice in this group showed weight loss at that time. In contrast, the mice injected with SLP65-GFP-transduced ALL cells showed no signs of disease and no significant weight loss. At this time, all mice were sacrificed: Whereas mice injected with GFP-transduced ALL cells showed splenomegalia and leukemic infiltration into multiple organs, there was only mild splenic enlargement, when SLP65-reconstituted ALL cells were injected. Reconstitution of SLP65 also reduced the frequency of BCR-ABL1-transformed leukemia cells about 15-fold in the bone marrow, 5-fold in the spleen and >100-fold in the peripheral blood. We conclude that deficiency of the pre-B cell receptor-related signaling molecule SLP65 not only represents a frequent feature in human ALL cells but also represents a critical requirement for BCR-ABL1-driven leukemic growth in vivo. We conclude that pre-B cell receptor signaling renders B cell progenitor cells non-permissive to BCR-ABL1-mediated transformation. Only crippled pre-B cells with a non-functional pre-B cell receptor are susceptible to BCR-ABL1-mediated transformation.


PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229170
Author(s):  
Veronika Kozlova ◽  
Aneta Ledererova ◽  
Adriana Ladungova ◽  
Helena Peschelova ◽  
Pavlina Janovska ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2795-2795
Author(s):  
Daniel Trageser ◽  
Lars Klemm ◽  
Sebastian Herzog ◽  
Yong-mi Kim ◽  
Cihangir Duy ◽  
...  

Abstract Pre-B cells within the bone marrow are destined to die unless they are rescued through survival signals from the pre-B cell receptor. Studying the configuration of the immunoglobulin heavy chain locus (IGHV) in sorted human bone marrow pre-B cells by single-cell PCR, we detected a functional IGHV allele consistent with the expression of a functional pre-B cell receptor in the vast majority of normal human pre-B cells. However, only in 10 of 44 cases of BCR-ABL1-transformed pre-B cell-derived acute lymphoblastic leukemia (ALL), we detected a functional IGHV allele. For this reason, we studied the function of the pre-B cell receptor during early B cell development and progressive transformation in a BCR-ABL1-transgenic mouse model: Interestingly, BCR-ABL1-transgenic mice that have not yet undergone leukemic transformation show almost normal pre-B cell receptor selection. In these “pre-leukemic” pre-B cells, however, expression of the BCR-ABL1-transgene is extremely low as compared to full-blown ALL, suggesting that high levels of BCR-ABL1 expression are not compatible with normal expression of the pre-B cell receptor. Consistent with our observations in human ALL, full-blown ALL clones in BCR-ABL1-transgenic mice indeed show defective pre-B cell receptor selection and the pre-B cell receptors expressed on few leukemic cells are not functional. Treatment of leukemic mice with the BCR-ABL1 kinase inhibitor AMN107, however, reinstated normal pre-B cell receptor selection and pre-B cell receptor function within seven days. These data suggest that the transforming signal through BCR-ABL1 and normal survival signals through the pre-B cell receptor are mutually exclusive. In support of this hypothesis, we found that the full-blown leukemia only comprises one to four independent clones of “crippled” pre-B cells - even though all B cell precursors in these mice carry the BCR-ABL1-transgene. To test whether functional pre-B cell receptor signaling vetoes transformation by BCR-ABL1, we transformed murine pre-B cells carrying a deletion of the SLP65 gene, which is required for functional pre-B cell receptor signaling. Unlike SLP65-wildtype pre-B cells, SLP65−/− pre-B cells can be transformed by BCR-ABL1 at a high efficiency. Reconstitution of SLP65 using a retroviral vector, however, induced rapid cell death of BCR-ABL1-transformed pre-B cells. Next, we identified human BCR-ABL1-negative ALL cases with a functional or defective pre-B cell receptor signaling cascade. Transduction of pre-B cell receptor-deficient ALL cells resulted in rapid outgrowth while ALL cells with a functional pre-B cell receptor were not permissive to transduction with BCR-ABL1. We conclude that the pre-B cell receptor represents a potent tumor suppressor and a safeguard against BCR-ABL1-mediated transformation. Only “crippled” pre-B cells with a non-functional pre-B cell receptor are susceptible to BCR-ABL1-mediated transformation.


2015 ◽  
Vol 195 (4) ◽  
pp. 1548-1563 ◽  
Author(s):  
Susann Hüttl ◽  
Kathrin Kläsener ◽  
Michaela Schweizer ◽  
Janna Schneppenheim ◽  
Hans-Heinrich Oberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document