Increased Angiogenic Property Of Human Peripheral Blood Monocytes By ex Vivo Culture With c-Mpl Agonists In Hindlimb Ischemia Mouse Model

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1062-1062
Author(s):  
Junpei Sasajima ◽  
Toru Kawamoto ◽  
Yoshiaki Sugiyama ◽  
Yusuke Mizukami ◽  
Yasuyuki Iuchi ◽  
...  

Abstract Human peripheral blood mononuclear cells (PB-MNCs) include some populations which have angiogenic properties. Pro-angiogenic monocytes from PB-MNCs are considered as one of candidates for angiogenic therapy in regenerative medicine. Indeed, in a recent German clinical post-infarction remodeling study (TOPCARE-AMI) for ischemic heart disease, the ex vivo culture of PB-MNCs was employed. However, in this trial, there were different therapeutic efficacies in each case, possibly due to the different expansion efficacy of the ex vivo culture of PB-MNCs using autologous serum. In order to resolve this issue, we developed a new serum-free culture system composed of X-VIVO15 medium supplemented with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Floating spheres obtained by this serum-free culture system were mainly composed of CD11b+ monocytes. Interestingly, the mRNA expression of c-Mpl (thrombopoietin receptor) was markedly elevated compared with PB-MNCs, suggesting c-Mpl agonist could increase angiogenic property of cultured CD11b+ monocytes. Therefore, we assessed the impact of c-Mpl agonists on PB-MNC cultures in our serum-free method composed of X-VIVO15 medium with VEGF and bFGF. Both recombinant human thrombopoietin (rHuTPO) and romiplostim, a clinical grade second-generation TPO-receptor agonist, successfully increased sphere formations regarding both the number and size. The expressions of angiogenic factors, IL-8, CXCR4, and vasohibin-2, mRNA of CD11b+ monocytes cultured with c-Mpl agonists were up-regulated, indicating that cultivated CD11b+ monocytes have a proangiogenic potential. Finally, we investigated the proangiogenic potential of PB-MNCs derived CD11b+ monocytes in a hindlimb ischemia model utilizing BALB/c nude mice. Mice were randomly assigned to 7 groups: control mouse group (PBS-injected), freshly isolated CD11b+ monocyte-injected mouse group, cultivated CD11b+ monocyte with 2ng/ml and 20ng/ml rHuTPO -injected mouse groups, cultivated CD11b+ monocyte with 100ng/ml and 1000ng/ml romiplostim -injected mouse groups, cultivated CD11b+ monocyte without rHuTPO and romiplostim -injected mouse group. The intramuscular injection of CD11b+ monocytes cultivated with 20 ng/ml rHuTPO into the ischemic limb completely rescued the limbs from auto-amputations or foot necrosis, while only one (10.0%) of the control mice could be rescued. In addition, the intramuscular injection of both freshly isolated CD11b+ monocytes and CD11b+ monocytes cultivated without rHuTPO and romiplostim had a weak rescue effect on the ischemic limbs (8 and 7 of 10 mice had auto-amputations or foot necrosis, respectively). The salvage rate from necrosis in cultivated CD11b+ monocyte with romiplostim-injected mouse group is also superior to that in cultivated CD11b+ monocyte without rHuTPO-injected mouse group. Analysis of blood perfusion by a laser Doppler perfusion imaging system showed a significantly higher recovery in mice receiving the CD11b+ monocytes cultivated with 2 ng/ml or 20 ng/ml rHuTPO or 100ng/ml romiplostim 1 week after surgery. The functional capillary density and surface area visualized by perfusion with BS-I lectin also significantly increased in the rHuTPO- or romiplostim-treated group. In conclusion, an ex vivo addition of c-Mpl agonists augmented the pro-angiogenic activity of peripheral CD11b+ monocytes, and this method would be promising for human cell therapy to induce vascular regeneration by activating the angiogenic property in human peripheral blood-derived monocytes. Disclosures: Mizukami: The New Energy and Industrial Technology Development Organization of Japan: Research Funding.

Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2823-2833 ◽  
Author(s):  
PN Correa ◽  
AA Axelrad

Several culture media for the growth of human circulating erythroid burst-forming units (BFU-E) that have been claimed to be “serum-free” (“SF”) have actually included albumin preparations known to be contaminated with an undefined burst-promoting activity (BPA); a BPA has also been found in the preparations of other “SF” medium components. This has precluded reliable investigation of the growth factor (GF) requirements of these progenitors. Using a defatted, BPA- free bovine serum albumin (BSA) and the recombinant human growth factors (GFs) erythropoietin (rHu Epo), insulinlike growth factor 1 (rHu IGF-1), and interleukin-3 (rHu IL-3), we have developed an improved serum-free (SF) medium for the production of erythroid bursts from normal adult human peripheral blood mononuclear cells (PBMNC), which requires both hemin and retinyl acetate for its optimal performance. In the presence of BSA without IL-3 or Epo, no burst or colony formation was observed. With IL-3 and Epo alone, only a small number of day 14 erythroid colonies was obtained (12 +/- 1/10(5) PBMNC). Addition of hemin (0.1 mmol/L) allowed the direct scoring of day 14 hemoglobinized colonies and increased their number sevenfold (86 +/- 5). Inclusion of retinyl acetate at physiologic concentrations further augmented the number of colonies threefold to fourfold. Under these apparently optimal conditions, we found that IGF-I could entirely replace Epo. However, IGF-I required a 100-fold higher molar concentration than that of Epo to reach maximal stimulation. The combined effect of Epo and IGF-I was found to be less than the sum of their individual effects, suggesting an overlap in the sensitivities of erythroid progenitors to these GFs. The colony-forming efficiencies of erythroid progenitors in the improved SF medium was very high: 700 single, day 14 erythroid colonies/10(5) PB MNC (at 0.25 mmol/L hemin) distributed as 126 clusters (bursts), with a mean of 5.6 component colonies per burst. These findings show that IGF-I has an Epo-like activity that targets circulating early erythroid progenitors or their progeny, providing strong evidence for the existence of an Epo- independent pathway for normal human adult erythropoiesis, possibly operative when Epo levels are low.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 2823-2833 ◽  
Author(s):  
PN Correa ◽  
AA Axelrad

Abstract Several culture media for the growth of human circulating erythroid burst-forming units (BFU-E) that have been claimed to be “serum-free” (“SF”) have actually included albumin preparations known to be contaminated with an undefined burst-promoting activity (BPA); a BPA has also been found in the preparations of other “SF” medium components. This has precluded reliable investigation of the growth factor (GF) requirements of these progenitors. Using a defatted, BPA- free bovine serum albumin (BSA) and the recombinant human growth factors (GFs) erythropoietin (rHu Epo), insulinlike growth factor 1 (rHu IGF-1), and interleukin-3 (rHu IL-3), we have developed an improved serum-free (SF) medium for the production of erythroid bursts from normal adult human peripheral blood mononuclear cells (PBMNC), which requires both hemin and retinyl acetate for its optimal performance. In the presence of BSA without IL-3 or Epo, no burst or colony formation was observed. With IL-3 and Epo alone, only a small number of day 14 erythroid colonies was obtained (12 +/- 1/10(5) PBMNC). Addition of hemin (0.1 mmol/L) allowed the direct scoring of day 14 hemoglobinized colonies and increased their number sevenfold (86 +/- 5). Inclusion of retinyl acetate at physiologic concentrations further augmented the number of colonies threefold to fourfold. Under these apparently optimal conditions, we found that IGF-I could entirely replace Epo. However, IGF-I required a 100-fold higher molar concentration than that of Epo to reach maximal stimulation. The combined effect of Epo and IGF-I was found to be less than the sum of their individual effects, suggesting an overlap in the sensitivities of erythroid progenitors to these GFs. The colony-forming efficiencies of erythroid progenitors in the improved SF medium was very high: 700 single, day 14 erythroid colonies/10(5) PB MNC (at 0.25 mmol/L hemin) distributed as 126 clusters (bursts), with a mean of 5.6 component colonies per burst. These findings show that IGF-I has an Epo-like activity that targets circulating early erythroid progenitors or their progeny, providing strong evidence for the existence of an Epo- independent pathway for normal human adult erythropoiesis, possibly operative when Epo levels are low.


Pancreatology ◽  
2014 ◽  
Vol 14 (3) ◽  
pp. S120-S121
Author(s):  
Carlos Fernández Moro ◽  
Sougat Misra ◽  
Soledad Pouso ◽  
Marita Wallenberg ◽  
Rainer Heuchel ◽  
...  

PROTEOMICS ◽  
2014 ◽  
Vol 14 (13-14) ◽  
pp. 1623-1629 ◽  
Author(s):  
Sara Spaziani ◽  
Esther Imperlini ◽  
Annamaria Mancini ◽  
Marianna Caterino ◽  
Pasqualina Buono ◽  
...  

1998 ◽  
Vol 102 (3) ◽  
pp. 454-460 ◽  
Author(s):  
Abraham Solomon ◽  
Luigi Aloe ◽  
Jacob Pe’er ◽  
Joseph Frucht-Pery ◽  
Stefano Bonini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document