Expression Of Aldehyde Dehydrogenase Reflected Diverse Stem Cell Properties In Acute Myeloid Leukemia

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1344-1344
Author(s):  
Van T. Hoang ◽  
Eike C. Buss ◽  
Isabel Hoffmann ◽  
Abraham Zepeda-Moreno ◽  
Natalia Baran ◽  
...  

Abstract Separation of leukemic stem cells (LSC) and residual hematopoietic stem cells (HSC) from the same individual patient with acute myeloid leukemia (AML) is essential for a proper understanding of the leukemic driving mechanisms. We have studied the role of aldehyde dehydrogenase (ALDH) for this purpose and have defined the functional properties of ALDHbright cells in specific subgroups of AML. We have examined the ALDH activity by flow cytometry in bone marrow samples (BM) from 14 healthy donors and 73 patients with de novo AML. The median frequency of cells with high ALDH activity (ALDHbright cells) in the healthy subjects was 1.92% with a range from 0.58 to 3.16%. For patients with AML, the median number of ALDHbright cells was 0.25% with a broad range from 0.004 to 33.57%. Whereas the majority of patients with AML (n = 56) had low frequencies of ALDHbright cells (median 0.11%; range 0.004 – 1.77%; defined as ALDH-low AML), 17 patients had relatively numerous ALDHbright cells (median 9.01; range 3.54 – 33.57%; defined as ALDH-numerous AML). In both groups, ALDHbright cell populations were highly enriched for CD34+CD38- cells. The ALDHbright cells derived from ALDH-low AML did not contain chromosomal and molecular aberrations characteristic of the original leukemia, and were able to induce multi-lineage hematopoiesis in NSG mouse models. Thus, genetically and functionally normal HSC could be successfully isolated in the ALDHbright subset, whereas LSC were enriched in ALDHdimCD34+CD38- subset for patients with ALDH-low AML. For 17 patients with ALDH-numerous AML, the ALDHbright subset was consistently contaminated with LSC. In clinical follow-ups, patients with ALDH-numerous AML showed resistance to induction chemotherapy and were characterized by a very poor long-term outcome that was comparable to patients with high-risk cytogenetic or molecular genetic markers. In four patients with ALDH-numerous AML we demonstrated that the ALDHbrightCD34+CD38- subset contained chemotherapy-resistant clones with repopulating ability. Furthermore, such ALDHbright cells were characterized by a lower cell-cycle activity and an increased resistance to cytarabine in comparison with ALDHdim blasts in in vitro assays. Our data have provided evidence that LSC and residual HSC can be separated using ALDH in patients with low frequencies of ALDHbright cells. In patients with ALDH-numerous AML, the ALDHbright subset is associated with leukemic features both in vitro and in animal models. Thus our data demonstrated the feasibility of appropriate comparisons of LSC versus HSC from the same patient with specific subtypes of AML and the impact of LSC properties on clinical outcome. Disclosures: Buss: Novartis: Travel support Other; Micromet/Amgen: Reimbursements for participation in a clinical study , Reimbursements for participation in a clinical study Other. Ho:Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Genzyme: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3298-3298
Author(s):  
Lili Feng ◽  
Haohai Zhang ◽  
Paola de Andrade Mello ◽  
Dina Stroopinsky ◽  
Wenda Gao ◽  
...  

Abstract Corresponding author: Dr. Simon. C. Robson ([email protected]). Introduction: CD39/ENTPD1 (ectonucleoside triphosphate diphosphohydrolase-1) is the prototypic member of the GDA1-CD39 superfamily of ectonucleotidases and modulates purinergic signaling pathways. CD39 expression has been noted in human acute myeloid leukemia (AML) and likely contributes to chemoresistance [1]. Our study reported here elucidates the impact of Cd39 on engraftment and invasiveness of AML TIB-49 cells using an immunocompetent murine experimental model. Methods: Wild-type (WT) mice and Cd39 -/- mice on C57BL/6 background were bred at Beth Israel Deaconess Medical Center. The syngeneic murine AML cell line TIB-49 (Cd39 negative in vitro) was purchased from American Type Culture Collection. For bioluminescence imaging experiments, TIB-49 cells were transduced with luciferase/mCherry using a lentiviral vector. For AML model, mice were administered with 1×10 6 TIB-49-luciferase cells intravenously via tail vein injection. For chloroma model, mice were subcutaneously inoculated with 1×10 6 TIB-49 cells in the right flank. Bioluminescence imaging of TIB-49-luciferase bearing mice was conducted with the IVIS TM 50 Imaging System. Blood, spleen and bone marrow (BM) were also collected from TIB-49 bearing AML mice for FACS (fluorescence activated cell sorting) analysis. To explore Cd39 in TIB engraftment and invasiveness, TIB-49 cells were further transduced with a lentiviral vector overexpressing mCd39 with TdTomato. WT mice were intravenously inoculated with 1×10 6 of either TIB-49-TdTomato cells or TIB-49-mCd39-TdTomato cells, and the above read-outs were determined. To investigate the potential of CD39 as a therapeutic target, we engineered anti-mouse Cd39 antibodies (αCd39 mAb) with isotype selection and removal of fucose to further promote Fc receptor (FcR) interactions. Results: Bioluminescence imaging results indicated that TIB-49 engraftment was decreased in global Cd39 -/- mice with decreased disease burdens noted relative to WT (Figure 1A). FACS analysis of blood, spleen and BM-derived cells from TIB-49 bearing AML-model mice (day 31) confirmed higher engraftment of TIB-49 cells (TdTomato+) at all sites in WT compared to Cd39 -/- mice (Figure 1B). TIB-49 cells did not express Cd39 in vitro, but TIB-49 cells harvested from spleen and BM of WT but not Cd39 -/- mice displayed high levels of Cd39. This indicated TIB-49 cells acquired Cd39 from host cells, in a process of antibody-independent trogocytosis (Figure 1C), as RT-PCR did not detect Cd39 mRNA expression in TIB-49 cells in vivo. Additionally, circulating TIB-49 cells from the blood of WT mice were Cd39 negative (Figure 1C), suggesting a role for the tumor microenvironment in mediating trogocytosis. TIB-49 cells expressing host Cd39 in WT mice spleen and BM lost Cd39 after being exposed to αCd39 mAb treatment. Cd39 translocated from TIB-49 cells to effector cells, at least in part, dependent on FcR mediated trogocytosis (Figure 1D). When Cd39 was overexpressed on TIB-49 cells (TIB-49-mCd39-TdTomato), the engraftment was boosted in WT mice in vivo when compared to TIB-49-TdTomato cells (day 19, Figure 1E) with higher levels of Cd39 expression than that observed on TIB-49-TdTomato cells in spleen and BM (day 26) (Figure 1F). Moreover, TIB-49-mCd39-TdTomato bearing mice displayed shorter survival times, when compared with TIB-49-TdTomato bearing AML mice (Figure 1G). The αCd39 mAb monotherapy had no effect on TIB-49 chloroma model growth. However, pretreatment with αCd39 mAb effectively boosted daunorubicin chemotherapeutic effects in vivo (Figure 1H and 1I). Conclusions: Our study suggests bidirectional trogocytosis between TIB-49 AML and host immune cells, which is further modulated by FcR interaction. Re-distribution of Cd39 from host to TIB-49 cells or induced high level expression contributes to engraftment and invasiveness, resulting in decreased survival. Targeting CD39 is a potential therapeutic approach, operational not only by boosting chemosensitivity but furthering anti-leukemic effects in experimental models. Disclosures: No relevant conflicts of interest to declare. References: [1] Nesrine Aroua, Emeline Boet, Margherita Ghisi, et al. Extracellular ATP and CD39 Activate cAMP-Mediated Mitochondrial Stress Response to Promote Cytarabine Resistance in Acute Myeloid Leukemia. Cancer Discov. 2020. Figure 1 Figure 1. Disclosures Stroopinsky: The Blackstone Group: Consultancy. Avigan: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Kite Pharma: Consultancy, Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Aviv MedTech Ltd: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Legend Biotech: Membership on an entity's Board of Directors or advisory committees; Chugai: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Parexcel: Consultancy; Takeda: Consultancy; Sanofi: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1451-1451
Author(s):  
Sigal Tavor ◽  
Tali Shalit ◽  
Noa Chapal Ilani ◽  
Yoni Moskovitz ◽  
Nir Livnat ◽  
...  

Background: Recent advances in acute myeloid leukemia(AML) targeted therapy improve overall survival. While these targeted therapies can achieve prolonged remissions, most patients will eventually relapseunder therapy. Our recent studies suggest that relapse most often originates from several sub-clones of leukemic stem cells (LSCs), present before therapy initiation, and selected due to several resistance mechanisms. Eradication of these LSCs during treatment induction /remission could thus potentially prevent relapse. The overall goal of the current study was to identify drugs which can be safely administrated to patients at diagnosis and that will target LSCs. Since simultaneously testing multiple drugs in vivo is not feasible, we used an in vitrohigh throughput drug sensitivity assay to identify new targets in primary AML samples. Methods: Drug sensitivity and resistance testing (DSRT) was assessed in vitro (N=46 compounds) on primary AML samples from patients in complete remission (N=29). We performed whole exome sequencing and RNAseq on samples to identify correlations between molecular attributes and in vitro DSRT. Results:Unsupervised hierarchical clustering analysis of in vitro DSRT, measured by IC50, identified a subgroup of primary AML samples sensitive to various tyrosine kinase inhibitors (TKIs). In this subgroup, 52% (9/17) of AML samples displayed sensitivity to dasatinib (defined as a 10-fold decrease in IC50 compared to resistant samples). Dasatinib has broad TKI activity, and is safely administered in the treatment of leukemia. We therefore focused our analysis on predicting AML response to dasatinib, validating our results on the Beat AML cohort. Enrichment analysis of mutational variants in dasatinib-sensitive and resistant primary AML samples identified enrichment of FLT3/ITD (p=0.05) and PTPN11(p=0.05) mutations among dasatinib responders. Samples resistant to dasatinib were enriched with TP53 mutations (p=0.01). No global gene expression changes were observed between dasatinib-sensitive and resistant samples in our cohort, nor in the Beat AML cohort. Following this, we tested the differential expression of specific dasatinib-targeted genes between dasatinib-responding and resistant samples. No significant differences were identified. However, unsupervised hierarchical clustering of dasatinib targeted genes expression in our study and in the Beat AML cohort identified a subgroup of AML samples (enriched in dasatinib responders) that demonstrated overexpression of three SRC family tyrosine kinases:FGR, HCK and LYN as well as PTK6, CSK, GAK and EPHB2. Analysis of the PTPN11 mutant samples revealed that the IC50 for dasatinib in 23 carriers of the mutant PTPN11 was significantly lower compared to the IC50 of PTPN11 wild type samples (p=0.005). LYN was also upregulated (p<0.001) in the mutant samples. We therefore hypothesized that gene expression of dasatinib-targeted genes could be used as a predictive biomarker of dasatinib response among FLT3/ITD carriers. We found that among FLT3/ITD AML carriers in the Beat AML cohort LYN, HCK, CSK and EPHB2 were significantly over-expressed in the dasatinib responding samples (N=27) as compared to the dasatinib resistant samples (N=35). To predict response to dasatinib among FLT3/ITD carriers we used a decision tree classifier based on the expression levels of these four genes. Our prediction model yielded a sensitivity of 74% and specificity of 83% for differentiating dasatinib responders from non-responders with an AUC of 0.84. Based on our findings, we selected FLT3/ITD AML samples and injected them to NSG-SGM3 mice. We found that in a subset of these samples, dasatinib significantly inhibited LSCs engraftment. This subset of FLT3/ITD AML samples expressed higher levels of LYN, HCK,FGR and SRC as compared to the FLT3/ITD samples that were not sensitive to dasatinib therapy in vivo. In summary, we identified a subgroup of AML patients sensitive to dasatinib, based on mutational and expression profiles. Dasatinib has anti-leukemic effects on both blasts and LSCs. Further clinical studies are needed to demonstrate whether selection of tyrosine kinase inhibitors, based on specific biomarkers, could indeed prevent relapse. Disclosures Tavor: Novartis: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; BMS companies: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2709-2709
Author(s):  
Haydar Celik ◽  
Katherine E. Lindblad ◽  
Bogdan Popescu ◽  
Giovanna Fantoni ◽  
Gege Gui ◽  
...  

The bone marrow (BM) microenvironment is increasingly recognized as an important contributor to acute myeloid leukemia (AML) pathogenesis. However, despite growing interest in characterizing different components and cellular architecture of the BM niche and their biological significance in leukemogenesis, the proteomic constitution of the BM extracellular compartment that distinguishes a leukemic niche from its normal counterpart has not yet been fully described. We therefore performed a quantitative, large-scale proteomic analysis of 1,305 human proteins of the non-cellular compartment of BM (plasma) samples from ten relapsed or refractory AML patients and from ten age- and sex-matched healthy donors (HDs) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). This screen identified a total of 168 differentially abundant proteins, of which 91 were significantly more and 77 proteins significantly less abundant in leukemic BM compared with healthy marrow (FC ≥ 1.5, FDR ≤ 0.05). Comparative analysis of BM plasma and peripheral blood (PB) serum samples from the same AML patients and HDs revealed 65 similarly regulated proteins (37 up-regulated vs. 28 down-regulated) and 1 differently regulated protein between the two compartments. Out of the total 168 proteins, 102 proteins were specifically dysregulated only in the BM compartment. TruSeq Stranded Total RNA-sequencing (Illumina) was also performed using paired-end 75bp sequencing on a HiSeq 3000. RNA was isolated from PAXgene BM RNA tubes (Qiagen) collected in parallel with samples for proteomic analysis. Results of analysis of differentially expressed transcripts only partially overlapped with those candidates identified from our validated proteomic approach, indicating that sequencing of RNA derived from cellular sources of BM may be a suboptimal screening strategy to determine the true proteomic composition of the extracellular compartment of the AML marrow microenvironment. In addition to several previously reported proteins, our proteomics screen discovered numerous aberrantly expressed proteins in leukemic marrow whose role in AML pathogenesis is currently unknown. Using pathway analysis, we identified sets of proteins enriched for specific biological pathways including RAS, ephrin, PDGF, PI3K/AKT, MAPK, Notch, TLR, JAK-STAT, NFκB, Rap1, and Tie2 signaling pathways. A systems biology analysis approach revealed the highly connected network of cytokines and chemokines as the most striking AML-associated proteomic alteration in the BM. We identified IL-8 as a differentially expressed and key central molecule of this network in AML, consistent with recent reports. Importantly, we also identified significantly elevated levels of CKβ8 and CKβ8-1, alternatively spliced isoforms of the myelosuppressive chemokine CCL23 also known as myeloid progenitor inhibitory factor 1 (MPIF-1) or CKβ8, in both leukemic marrow and PB serum samples (Figure 1). Given the critical importance of cytopenias, often disproportional to the degree of leukemic marrow involvement, in the morbidity and mortality of patients with myelodysplastic syndrome (MDS) and AML, we subsequently confirmed this striking finding by performing orthogonal validation in a larger cohort of MDS and AML patients using an ELISA-based immunoassay. This novel finding suggests the possibility that CCL23 may play a role in suppression of normal hematopoiesis in MDS and AML. In support of this hypothesis, we demonstrated in vitro myelosuppressive effects of CCL23 isoforms on colony formation by human CD34+ hematopoietic stem and progenitor cells (HSPCs) in an in vitro colony forming unit assay, resulting in an approximately 2.5-fold decrease in CFU-GM and an evident decrease in CFU-GEMM counts. In summary, our broad and quantitative proteomic dataset of extracellular factors present in leukemic and normal aging bone marrow has already provided novel mechanistic insights into AML pathogenesis and should serve, together with paired RNA-sequencing information, as a useful public resource for the research community. Disclosures Lai: Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Speakers Bureau; Astellas: Speakers Bureau; Daiichi-Sankyo: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees. Hourigan:SELLAS Life Sciences Group AG: Research Funding; Merck, Sharpe & Dohme: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2249-2249
Author(s):  
Sujan Piya ◽  
Huaxian Ma ◽  
Priyanka Sharma ◽  
Kensuke Kojima ◽  
Vivian Ruvolo ◽  
...  

Abstract Background: De novo nucleotide synthesis is necessary to meet the enormous demand for nucleotides, other macromolecules associated with acute myeloid leukemia (AML) progression 1, 2, 3 4. Hence, we hypothesized that targeting de novo nucleotide synthesis would lead to the depletion of the nucleotide pool, pyrimidine starvation and increase oxidative stress preferentially in leukemic cells compared to their non-malignant counterparts, impacting proliferative and differentiation pathways. Emvododstat (PTC299) is an inhibitor of dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme for de novo pyrimidine nucleotide synthesis that is currently in a clinical trial for the treatment of AML. Objectives: The goals of these studies were to understand the emvododstat-mediated effects on leukemia growth, differentiation and impact on Leukemia Stem Cells(LSCs). Comprehensive analyses of mitochondrial function, metabolic signaling in PI3K/AKT pathways, apoptotic signatures, and DNA damage responses were carried out. The rationale for clinical testing emvododstat was confirmed in an AML-PDX model. Results: Emvododstat treatment in cytarabine-resistant AML cells and primary AML blasts induced apoptosis, differentiation, and reduced proliferation, with corresponding decreased in cell number and increases in annexin V- and CD14-positive cells. Indeed, the inhibition of de novo nucleotide synthesis compromises the dynamic metabolic landscape and mitochondrial function, as indicated by alterations in the oxygen consumption rate (OCR) and mitochondrial ROS/membrane potential and corresponding differentiation, apoptosis, and/or inhibition of proliferation of LSCs. These effects can be reversed by the addition of exogenous uridine and orotate. Further immunoblotting and mass cytometry (CyTOF) analyses demonstrated changes in apoptotic and cell signaling proteins (cleaved PARP, cleaved caspase-3) and DNA damage responses (TP53, γH2AX) and PI3/AKT pathway downregulation in response to emvododstat. Importantly, emvododstat treatment reduced leukemic cell burden in a mouse model of AML PDX ( Complex karyotype ,mutation in ASXL1, IDH2, NRAS), decreased levels of leukemia stem cells frequency (1 in 522,460 Vs 1 in 3,623,599 in vehicle vs emvododstat treated mice), and improved survival. The median survival 40 days vs. 30 days, P=0.0002 in primary transplantation and 36 days vs 53.5 days, P=0.005 in secondary transpantation in a PDX mouse model of human AML. This corresponded with a reduction in the bone marrow burden of leukemia and increased expression of differentiation markers in mice treated with emvododstat (Fig. 1). These data demonstrate effect of emvododstat on mitochondrial functions . Conclusion: Inhibition of de novo pyrimidine synthesis triggers differentiation, apoptosis, and depletes LSCs in AML models. Emvododstat is a novel dihydroorotate dehydrogenase inhibitor being tested in a clinical trial for the treatment of myeloid malignancies and COVID-19. Keywords: AML, emvododstat, DHODH, apoptosis, differentiation References: 1 Thomas, D. & Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 129, 1577-1585, doi:10.1182/blood-2016-10-696054 (2017). 2 Quek, L. et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. The Journal of experimental medicine 213, 1513-1535, doi:10.1084/jem.20151775 (2016). 3 Villa, E., Ali, E. S., Sahu, U. & Ben-Sahra, I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 11, doi:10.3390/cancers11050688 (2019). 4 DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci Adv 2, e1600200, doi:10.1126/sciadv.1600200 (2016). Figure 1 Figure 1. Disclosures Weetall: PTC therapeutics: Current Employment. Sheedy: PTC therapeutics: Current Employment. Ray: PTC therapeutics: Current Employment. Andreeff: Karyopharm: Research Funding; AstraZeneca: Research Funding; Oxford Biomedica UK: Research Funding; Aptose: Consultancy; Daiichi-Sankyo: Consultancy, Research Funding; Syndax: Consultancy; Breast Cancer Research Foundation: Research Funding; Reata, Aptose, Eutropics, SentiBio; Chimerix, Oncolyze: Current holder of individual stocks in a privately-held company; Novartis, Cancer UK; Leukemia & Lymphoma Society (LLS), German Research Council; NCI-RDCRN (Rare Disease Clin Network), CLL Foundation; Novartis: Membership on an entity's Board of Directors or advisory committees; Senti-Bio: Consultancy; Medicxi: Consultancy; ONO Pharmaceuticals: Research Funding; Amgen: Research Funding; Glycomimetics: Consultancy. Borthakur: ArgenX: Membership on an entity's Board of Directors or advisory committees; Protagonist: Consultancy; Astex: Research Funding; University of Texas MD Anderson Cancer Center: Current Employment; Ryvu: Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; GSK: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2734-2734
Author(s):  
Valeria Bisio ◽  
Maddalena Benetton ◽  
Elena Porcù ◽  
Matteo Bordi ◽  
Carlo Zanon ◽  
...  

In acute myeloid leukemia (AML), the assessment of post-induction minimal residual disease (MRD) is largely utilized for choosing post-remission therapies aimed at maintaining complete remission (CR) and preventing relapse. This latter is still the major cause of treatment failure in pediatric AML, and even if several efforts have been spent to validate MRD as a prognostic marker, numerous studies demonstrated that MRD negativity cannot be considered a completely reliable surrogate biomarker predicting outcome, since it does not exclude a relapse. The current interpretation is that disease relapse is due to mechanisms leading to therapy resistance mainly depending on driver chimeric or oncogenic protein-coding genes, which are monitored during treatment, and does not consider that chemotherapy resistance may arise from other genetic markers, phenomenon linked to methylation and non-coding RNAs genomic pressure. We, thus, hypothesized that other markers need to be explored to re-interpret leukemia progression. We showed an overall hyper-expression of the lncRNA BALR2 in 132 de novo AML bone marrow samples collected at diagnosis and analyzed the gene expression profile (GEP) of 58 cases. By unsupervised clustering analysis, we produced important advances in identifying BALR2 as a robust novel molecular marker of a new subgroup of AML characterized by a high rate of resistance to induction therapy, independently from the genetic lesions detected at diagnosis and any other prognostic clinical and genetic features. We demonstrated in vitro that BALR2 has a direct role in controlling bi-directionally its own and of its neighbor gene CDK6 promoter activity. This latter finding of high CDK6 expression was shown to sustain its complex with RUNX1 in order to inhibit RUNX1 binding to its target promoters, thus preventing the process of hematopoietic differentiation progression. To support BALR2 as a new proto-oncogene involved in the control of the myeloid differentiation program, we ranked the genes across the expression profile obtaining a signature of 337 transcripts able to cluster CD34+ human stem cell precursors (HSCPs) separately from more mature CD14+ cells. These in silico findings were validated in vitro by showing that, after BALR2 depletion, CD34+ cells had a skewed myeloid differentiation. Furthermore, we found that AML differentiation toward mature myeloid cells with increased phagocytic capacity was obtained through BALR2 level reduction, and enhanced by combinatorial differentiation stimuli. Our findings attribute a distinct role to BALR2 in the block of myeloid stem cell differentiation occurring during leukemogenesis. At the same time, we interrogated GEP ontology, finding that enrichments of genes involved in mitochondrial synthesis pathways were significantly correlated to patients with highest BALR2 levels, and confirmed the same mitochondriogenesis profile in the immature CD34+ HSCPs. We moved to deconvolute this feature and demonstrated that BALR2, by controlling mitochondria gene balance, was directly controlling the mitochondrial mass, which dramatically decreased after BALR2 silencing, this supporting the hypothesis that BALR2 would maintain mitochondrial functions to confer AML resistance to cytotoxicity. Consistently with this line of reasoning, we inhibited mitochondria by tigecycline, demonstrating that its activity was dramatically strengthened in BALR2 depleted cells, when used either alone or in combination with cytosine-arabinoside (Ara-C). Concomitantly, tigecycline treatment in BALR2 silenced AML cells reduced mitochondria depolarization, and increased the number of differentiated M-CFU colonies formation, confirming that BALR2, together with CDK6, forms novel transcriptional networks to create a circuit able to impair myeloid differentiation and to lower chemo-sensitivity in AML. We speculate that a novel therapeutic window of mitochondrial targeting in defined AML subgroups, identified through assessment of BALR2 levels at diagnosis or persistent MRD levels, could be envisaged to optimize the outcome of childhood AML. Disclosures Locatelli: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; bluebird bio: Consultancy; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Miltenyi: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2696-2696
Author(s):  
Christina A. Snider ◽  
Kevin Fung ◽  
Francesca Gould ◽  
Vera Adema ◽  
Cassandra M Kerr ◽  
...  

One strategy to improve precision medicine in acute myeloid leukemia (AML) is to further our understanding of the biological factors that influence pharmacologic efficacy. In a recent study, whole transcriptome analysis was conducted using pre- and post-treatment samples from a cohort of relapsed or refractory (R/R) AML patients treated with mitoxantrone, etoposide, cytarabine (MEC), and ixazomib. Logistic regression and linear discriminant analysis identified RORa as a predictor of response to treatment (Advani, et al., Clin Cancer Res, 2019, 4231-4237). RORa is not frequently mutated in AML but is described to be a tumor suppressor in patients with solid tumors. In the latter patient population, increased RORa expression is also associated with improved survival. We first retrospectively evaluated the prognostic significance of RORa in a larger cohort of R/R patients with AML (BeatAML). Second, we characterized RORa expression in cellular models of AML and sought to determine whether a commercially available RORa/RORγ agonist, SR1078, has anti-proliferative capacity in leukemia cell lines. For the correlative survival analyses, RORa mRNA expression and clinical information was downloaded from the BeatAML cohort (Tyner, et al., Nature, 2018, 526-531). Patients were categorized into high expressers (≥ median) and low expressers (<median). In total, 121 R/R patients were investigated. The mean age of diagnosis was 62 ± 12 years, and 58% of patients were male. The most common specific diagnosis at inclusion was AML with myelodysplasia related changes (28%), followed by AML with mutated NPM1 (18%) and therapy-related myeloid dysplasia (13%). Over half of the analyzed samples were peripheral blood (58%), and the remaining samples were either bone marrow aspirate (58%) or from leukapharesis (2%). As a whole, the median mRNA expression levels of RORa in patients with R/R AML (n=121) compared to healthy subjects (n=21) were 6.6 log2 CPM vs. 2.5 log2 CPM (P<.0001). After grouping patients into low RORa expresser and high RORa expresser groups, patients with above median expression of RORa were found to have significantly longer overall survival (19 mo. vs. 13 mo.; P=.0052; Figure 1). During normal hematopoiesis, we observed that RORa expression decreased with the stages of cellular maturation and is highly expressed in cells of AML patients with complex karyotype (BloodSpot, 2018). We noted that RORa mRNA expression varied across patients suggesting differences between AML subtypes. Expression levels were also confirmed to be different across AML subtypes in vitro by using cell line models (K-562, KG-1, OCI-AML3, U-937, THP-1, MOLM-13). In particular, analysis of TCGA data showed higher mean RORa expression in DNMT3A mutant (MT) (626 RPKM) compared to mean RORa expression in CEBPAMT (243 RPKM; P=0.026), NPM1MT (167 RPKM; P=0.012), and FLT3MT (236 RPKM; P=.003) AML patients. We then analyzed the sensitivity of cell lines to the commercially available synthetic RORa /RORγ ligand, SR1078. Myeloid lineage cells U-937 and KG-1 were used as a cellular model. Cells in logarithmic phase were treated with increased concentrations of the RORa /RORγ agonist SR1078 (from 3 nM to 30 mM) for 24 hours. Cell viability was measured by MTT tetrazolium reduction assay. Maximal growth inhibition was reached at 30 µM for U-937 (80%) and KG-1 (75%), respectively. We then combined SR1078 with MEC to evaluate whether in vitro SR1078 increased MEC growth inhibition. The addition of SR1078 to MEC significantly decreased cell viability in KG-1 cells compared to MEC alone (82% vs. 19%, P=.029). Our study suggests that increased RORa expression may be associated with improved survival in patients with R/R AML and that RORa may be a potential therapeutic target in AML. Figure 1 Disclosures Gerds: Celgene Corporation: Consultancy, Research Funding; Imago Biosciences: Research Funding; Pfizer: Consultancy; CTI Biopharma: Consultancy, Research Funding; Incyte: Consultancy, Research Funding; Roche: Research Funding; Sierra Oncology: Research Funding. Mukherjee:Bristol-Myers Squibb: Speakers Bureau; Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Partnership for Health Analytic Research, LLC (PHAR, LLC): Consultancy; McGraw Hill Hematology Oncology Board Review: Other: Editor; Projects in Knowledge: Honoraria. Nazha:Jazz Pharmacutical: Research Funding; Incyte: Speakers Bureau; Novartis: Speakers Bureau; MEI: Other: Data monitoring Committee; Tolero, Karyopharma: Honoraria; Abbvie: Consultancy; Daiichi Sankyo: Consultancy. Maciejewski:Alexion: Consultancy; Novartis: Consultancy. Sekeres:Millenium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees. Advani:Abbvie: Research Funding; Pfizer: Honoraria, Research Funding; Glycomimetics: Consultancy, Research Funding; Amgen: Research Funding; Macrogenics: Research Funding; Kite Pharmaceuticals: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5697-5697
Author(s):  
Lacey S. Williams ◽  
Catherine E. Lai

Donor cell leukemia is postulated to account for up to 5% of all leukemia "relapses" after hematopoietic stem cell transplant (SCT), though in many cases this is the first leukemia diagnosis for the patient if their transplant was for non-leukemia primary diseases. The rarity of the condition and heterogeneity of disease create challenges in diagnosis and management. In the present case, donor cell leukemia (DCL) developed in a 68-year-old female after allogeneic SCT 18 years earlier for follicular lymphoma. Only one other case of DCL after transplantation for follicular lymphoma has been reported (Boulton-Jones et al., Bone Marrow Transplantation, 2005). Furthermore, this case is atypical in that the presentation occurred many years after transplantation, since very few cases of DCL occur more than 15 years after original transplant. Case In 1993, the patient was diagnosed with stage IIIA follicular lymphoma at age 50. She achieved a complete remission with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) for 4 years. She relapsed in 1998 and received treatment with fludarabine and mitoxantrone. In 1999, she enrolled in a toxitumomab clinical trial (NCT00268203) but discontinued therapy secondary to side effects. Due to persistent disease, she proceeded with SCT and received EPOCH-F (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and fludarabine) prior to allogeneic SCT from her brother in 2000 (6/6 HLA match), augmented with TH2 cells. She received graft versus host disease (GVHD) prophylaxis with cyclosporine, however her post transplant course was complicated by engraftment syndrome and gastrointestinal and skin GVHD. In 2019, she presented to hematology for evaluation of worsening chronic neutropenia and thrombocytopenia persistent for three years, noted during work-up for symptomatic cholelithiasis. Bone marrow biopsy revealed acute myeloid leukemia (AML) with a hypocellular marrow with 30% blasts and myelodysplasia related changes. Her cytogenetics showed 46XY, +1, der(1;7)(q10;p10)/47,sl,+8/46,XY. FISH analyses demonstrated deletion 7q31 D7S486 locus in 156/200 cells (78%). NGS panel showed IDH1 (VAF16%) and U2AF1 (VAF 26%) mutations. Based on cytogenetics and chimerism studies showing 100% donor, the patient was diagnosed with donor-derived AML secondary to allogeneic SCT from her brother. The brother currently has no known hematologic problems. The patient was treated with CPX-351 (liposomal cytarabine and daunorubicin) and achieved a complete remission, followed by consolidation with CPX-351. Given her complex cytogenetics and poor prognosis, the patient proceeded to non-myeloablative haploidentical peripheral blood SCT from her son, with post-transplant cyclophosphamide. She subsequently had complications of neutropenic fever and C. dificile colitis, with progressive colitis leading to her death on day 22 after SCT. Discussion Though cytogenetic and molecular studies along with functional status assist clinicians in treatment decisions for DCL patients, the benefits and risks of treatment remain difficult to balance for this unique subset of leukemia. Of patients that achieve remission for greater than 18 months, many undergo second allogeneic SCT, however a similar number of patients have remissions of at least 18 months treated with chemotherapy alone (Wiseman, Biology of Blood and Bone Marrow Transplantation, 2011). In 15 reported cases that went to SCT, approximately 50% lived longer than 12 months after their DCL diagnosis. Second allogeneic SCT is often favored after initial remission in patients with good performance status due to high risk for relapse. This case illustrates the challenge in management of donor cell leukemia, a rather rare entity with very few cases in the literature developing greater than 15 years after transplant. Limited robust evidence favoring a particular treatment supports the need for further prospective studies. Disclosures Lai: Agios: Membership on an entity's Board of Directors or advisory committees; Daiichi-Sankyo: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Jazz Pharma: Speakers Bureau; Astellas: Speakers Bureau.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged &gt;60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults &gt;60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3765-3765
Author(s):  
Cheuk-Him Man ◽  
David T. Scadden ◽  
Francois Mercier ◽  
Nian Liu ◽  
Wentao Dong ◽  
...  

Acute myeloid leukemia (AML) cells exhibit metabolic alterations that may provide therapeutic targets not necessarily evident in the cancer cell genome. Among the metabolic features we noted in AML compared with normal hematopoietic stem and progenitors (HSPC) was a strikingly consistent alkaline intracellular pH (pHi). Among candidate proton regulators, monocarboxylate transporter 4 (MCT4) mRNA and protein were differentially increased in multiple human and mouse AML cell lines and primary AML cells. MCT4 is a plasma membrane H+and lactate co-transporter whose activity necessarily shifts protons extracellularly as intracellular lactate is extruded. MCT4 activity is increased when overexpressed or with increased intracellular lactate generated by glycolysis in the setting of nutrient abundance. With increased MCT4 activity, extracellular lactate and protons will increase causing extracellular acidification while alkalinizing the intracellular compartment. MCT4-knockout (MCT4-KO) of mouse and human AMLdid not induce compensatory MCT1 expression, reduced pHi, suppressed proliferation and improved animal survival. Growth reduction was experimentally defined to be due to intracellular acidification rather than lactate accumulation by independent modulation of those parameters. MCT4-KOmetabolic profiling demonstrated decreased ATP/ADP and increased NADP+/NADPH suggesting suppression of glycolysis and the pentose phosphate pathway (PPP) that was confirmed by stable isotopic carbon flux analyses. Notably,the enzymatic activity of purified gatekeeper enzymes, hexokinase 1 (HK1), pyruvate kinase M2 isoform (PKM2) and glucose-6-phosphate dehydrogenase (G6PDH) was sensitive to pH with increased activity at the leukemic pHi (pH 7.6) compared to normal pHi (pH 7.3). Evaluating MCT4 transcriptional regulation, we defined that activating histonemarks, H3K27ac and H3K4me3, were enriched at the MCT4 promoter region as were transcriptional regulators MLL1 and Brd4 by ChIP in AML compared with normal cells. Pharmacologic inhibition of Brd4 suppressed Brd4 and H3K27ac enrichment and MCT4 expression in AML and reduced leukemic cell growth. To determine whether MCT4 based pHi changes were sufficient to increase cell proliferation, we overexpressed MCT4 in normal HSPC and demonstrated in vivo increases in growth in conjunction with pHi alkalization. Some other cell types also were increased in their growth kinetics by MCT4 overexpression and pHi increase. Therefore, proton shifting may be a means by which cells respond to nutrient abundance, co-transporting lactate and protons out of the cell, increasing the activity of enzymes that enhance PPP and glycolysis for biomass generation. Epigenetic changes in AML appear to exploit that process by increasing MCT4 expression to enforce proton exclusion thereby gaining a growth advantage without dependence on signaling pathways. Inhibiting MCT4 and intracellular alkalization may diminish the ability of AML to outcompete normal hematopoiesis. Figure Disclosures Scadden: Clear Creek Bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Sponsored research; Editas Medicine: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bone Therapeutics: Consultancy; Fog Pharma: Consultancy; Red Oak Medicines: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; LifeVaultBio: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Magenta Therapeutics: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Agios Pharmaceuticals: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fate Therapeutics: Consultancy, Equity Ownership.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document