Thrombin Generation Test Can Predict Bleeding Tendency In Patients With Severe Factor XI Deficiency

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3600-3600 ◽  
Author(s):  
Tami Livnat ◽  
Uriel Martinowitz ◽  
Rachel Mansharov ◽  
Zivelin Ariella ◽  
Ophira Salomon

Abstract Introduction Factor XI (FXI) is a rare bleeding disorder defined as severe deficiency when FXI activity level is less than 20IU/dL. Unlike hemophilia A or B, patients with severe FXI deficiency do not bleed spontaneously and their bleeding tendency is unpredictable and poorly correlated with FXI level. Therefore, almost all patients with severe FXI deficiency are being treated similarly unrelated to their inert bleeding tendency. Lately there is a growing interest in introducing global coagulation tests to assess the risk of bleeding in trauma patients as well as in patients with congenital bleeding disorders. Thrombin generation (TG) test is a global assay that can provide information regarding hemostasis in healthy individuals or in patients with congenital and acquired bleeding disorders. Our group had previously shown that recalcification induced TG is a useful tool to determine the optimal dose of recombinant factor VIIa for patients with severe FXI deficiency and inhibitors going through major surgery (Livnat et al. Thromb Haemost 2009). Aim In the present study we aimed to characterize the capability of TG to serve as an ideal tool to define upfront bleeders and non-bleeders among FXI deficient patients and find the optimal conditions of TG that could distinguish between bleeders and non-bleeders thus eventually leading to efficient personalized treatment. Methods Case control study composed of 16 unrelated patients with FXI levels range >1-8dL-1and 14 healthy controls. For TG assay blood was taken from all participants simultaneously in both buffered citrate and corn trypsin inhibitor (CTI) tubes after obtaining informed consent. TG was performed in platelet poor plasma (PPP) in the presence of 4 µM phospholipids and initiated by recalcification in the presence and absence of 1pM tissue factor (TF). Three TG parameters were analyzed: lag time, thrombin peak and endogenous thrombin potential (ETP). Results Table 1 summarizes FXI activity, FXI genotype, thrombin peak height and bleeding status (i.e, bleeding following challenges when prophylactic treatment was not given) of patients in the study group. As expected, FXI levels poorly correlated with bleeding tendency. Good correlation between FXI levels, bleeding tendency and TG peak height was found when blood was taken in citrated tubes and not in CTI containing tubes. While the normal range of peak height in recalcification-induced TG (without TF) was 421±161 nM, no TG was initiated with recalcification in PPP of FXI patients with less than 1%. FXI levels 2-4% were sufficient to induce TG with recalcification but thrombin peak height was remarkable lower in comparison to controls. In FXI levels above 5%, the thrombin peak height induced by recalcification varied between low to normal range. Interestingly, when TG was initiated by 1pM TF the TG peak of non-bleeders reached normal values (normal peak height in the presence of 1pM TF=411±121), while in the bleeders the peak was reduced unrelated to FXI levels (range 74-205). Conclusions In summary TG induced by recalcification in the presence of low TF but not when performed in CTI tubes may efficiently distinguish between bleeders and non-bleeders in FXI deficient patients going through major trauma unrelated to patients' FXI level. This observation permits to consider less aggressive prophylactic treatment to patients with reduced risk for bleeding thus lowering the risk of thrombosis due to over treatment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1796-1796
Author(s):  
Vickie McDonald ◽  
Savidge F. Geoffrey ◽  
Savita Rangarajan ◽  
Mike Mitchell

Abstract Traditional treatment modalities for FXI deficiency (UK prevalence 400 cases) include antifibrinolytics, desmopressin, fresh frozen plasma (FFP) and FXI concentrates but there has been reluctance to use FXI concentrates because of reported incidence rates of thrombosis up to 10%. Concerns over the safety and efficacy of FFP, with additional viral inactivation steps possibly leading to reduced FXI recoveries, have led us to increase our use of FXI concentrates. We aimed to assess the indications, dosage, recovery, efficacy and safety of Hemoleven, a plasma derived, purified and virally inactivated FXI concentrate, which also contains heparin and antithrombin, in patients with congenital factor XI deficiency. A retrospective study was performed using hospital notes and laboratory records of all patients who had received Hemoleven over a 2-year period. Eleven patients (6 male, 5 female) had been treated with a median age of 38 years (range 7–74) and mean baseline FXI:C levels of 25.4U/dl (3–50). All patients received Hemoleven as prophylaxis for surgery or dental work and had all previously had excess bleeding when surgically challenged. One patient died of a condition unrelated to FXI treatment. Pre- and post-FXI:C levels were available for a total of 60 treatment episodes of which 25 were 1000-unit doses and 35 were 2000-unit doses. The mean increase in FXI:C per 1000-unit dose was 25.4 U/dl (12.4–43.9) while the mean increase in FXI:C per 2000-unit dose was 50.5 U/dl (11.8–106.5). This is consistent with the manufacturer’s data. Ten minute post infusion FXI:C levels were above the normal range (73–133 U/kg) in 8% of patients given 1000 units and 11% of patients given 2000 units but below the normal range in 24% of patients who received 1000 units and 20% of patients who received 2000 units. 90% of treatment episodes led to FXI:C levels above the usual treatment target of 65 U/dl. Genetic analysis of 9/11 patients showed that 2 were homozygous (one type II and one type III), 6 were heterozygous for other recognised mutations and one had no mutation identified but apparent absence of RNA from one allele demonstrated in a relative by qRT-PCR. No excess bleeding or inhibitor development was recorded even in one patient who had had a poor haemostatic response with FFP. There were no episodes of arterial or venous thrombotic complications within this group and no clinical or laboratory evidence of DIC following treatment. In summary, treatment with factor XI concentrates gave consistent increments in FXI:C at the doses given and achieved good haemostasis with no episodes of thrombosis in this study, even in patients over the age of 60y. While the risk of prion transmission is still unknown, use of FXI concentrates is not associated with the risks of fluid overload and TRALI that are seen with FFP. We acknowledge that the study includes small numbers of patients however the cohort of patients with a bleeding diathesis in this condition is small. We conclude that Hemoleven appears to be an effective and reliable treatment for patients with FXI:C deficiency but should be given in the context of FXI:C level monitoring in order to detect those patients who may develop high levels and possible thrombosis.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1226-1226
Author(s):  
Deepa Ranjani Jayakody Arachchillage ◽  
Tina Biss ◽  
John Hanley ◽  
Kate Talks

Abstract Abstract 1226 The performance and utility of a condensed bleeding score (Bowman et al, J Thromb Haemost., 2008;6:2062) in relation to the diagnosis of a congenital bleeding disorder in new referrals to a regional haemostasis clinic over an 8 month period is presented. Between November 2010 and June 2011, 50 patients over the age of 16 (median age, 31 years; range, 16–79), including 32 females, were referred for investigation of a possible congenital bleeding disorder following detection of abnormal coagulation results and/or presentation with a bleeding history. A bleeding score was performed as part of their initial assessment. 12(24%) patients were from local referral and 38(76%) patients were referred from other hospitals in the region for further investigation of a suspected bleeding disorder. Basic coagulation tests (activated partial thromboplastin time (APTT), prothrombin time Clauss fibrinogen and platelet count) were normal in the referred patients from other centres. 50% (6/12) of the local referrals were for investigation of a prolonged APTT detected on routine coagulation screening prior to major surgery. The median bleeding score was 6 with a range of −1 to 14 (Table 1). The presence of a congenital bleeding disorder was confirmed in 31 of the 50 patients (62%), including 19/31 (61%) of the female patients and 12/31(39%) of the males. Correlation of an abnormal bleeding score (score ≥ 4) with diagnosis of a congenital bleeding disorder was only seen for diagnosis of type 1 Von Willebrand Disease (VWD) (Table 2). Analysis of the cases with low scores and abnormal results identified two groups of patients; firstly, those who had not yet had a significant haemostatic challenge, and secondly, those in whom the abnormal coagulation results were explained by a non-haemostatically significant reduction in a coagulation factor level (e.g. FVII, 15%; dysfibrinogenaemia; F XII deficiency). These clinically insignificant laboratory abnormalities explain the discrepancy between the number of patients with abnormal laboratory tests (35) and the number of patients diagnosed with a congenital bleeding disorder (31).Table 1Bleeding score (range)Number of patients with normal lab resultsNumber of patients with abnormal lab results−1 to +1382–44105–74128–102311–1422Total1535Table 2DiagnosisNumber of patientsMedian bleeding scoreAge rangeType 1 VWD116 (4–10)17–51Type 2 VWD48 (5–13)17–36Factor XI123 (1–8)17–76Platelet function defect46 (2–9)17–57 Compared to previous reports the range of scores found with this assessment tool was narrow and could not exclude patients from further laboratory assessment. However the condensed bleeding score has only been validated prospectively for the diagnosis of type 1 VWD and all patients in this cohort who were diagnosed with type 1 VWD had an abnormal bleeding score (≥ 4). This observation supports the role of this scoring system in the assessment of patients for type 1 VWD. The use of the condensed bleeding score in assessing patients with suspected factor XI deficiency is difficult due to the lack of a phenotypic relationship between residual factor XI activity and a bleeding tendency. Furthermore, although factor XI deficiency is a rare congenital bleeding disorder in our cohort of patients 12/31(39%) were diagnosed with factor XI deficiency. This may explain the overall lack of correlation between bleeding score and diagnosis of a congenital bleeding disorder. Patients who have an abnormal bleeding score but normal laboratory tests need consideration of further investigations before concluding they are normal. The possibility of an acquired bleeding disorder should be considered. A thorough drug history is also important as one of the patients with a bleeding score of 14 was taking a non-steroidal anti-inflammatory drug. The use of the condensed bleeding score in the detection of congenital bleeding disorders other than type 1 VWD requires further validation in a larger number of patients. Disclosures: No relevant conflicts of interest to declare.



2002 ◽  
Vol 88 (10) ◽  
pp. 576-582 ◽  
Author(s):  
Raed Al Dieri ◽  
Flora Peyvandi ◽  
Elena Santagostino ◽  
Muriel Giansily ◽  
Pier Mannuccio Mannucci ◽  
...  

SummaryWe investigated the relation between clotting factor concentration, the parameters of the thrombin generation curve (the thrombogram) and the severity of clinically observed bleeding in patients with congenital deficiency of prothrombin (n = 21), factor V (n = 22), factor VII (n = 22), factor X (n = 10), factor XI (n = 7) and factor XII (n = 6). The parameters used were: area under the curve (endogenous thrombin potential, ETP), peak concentration of thrombin attained and lag time before manifest formation.Peak height and ETP varied linearly with the concentration of prothrombin. For the other factors these parameters hyperbolically approached to the 100% limit with increasing clotting factor concentration. Half normal ETP was seen at about the following concentrations: prothrombin (50%), factor V (1%), factor VII (2%), factor X (5%) and factor XI (1%). As a rule, the peak height was somewhat more sensitive to clotting factor decrease than the ETP was.In all the patients with severe bleeding symptoms the ETP was less than 20% of normal. Bleeding tendency was absent or mild in patients with an ETP of 30% or higher. This value (except for prothrombin) is already obtained at concentrations of clotting factor of 1%-2%, which corroborates the clinical observation that a severe bleeding tendency is only seen in severe clotting factor deficiencies (less than 1%). The one exception was a patient with factor VII deficiency and severe bleeding, who showed a normal ETP value, albeit with a decreased peak height and a prolonged lag-time.



Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1788-1788
Author(s):  
Michael J. Mitchell ◽  
Letian Dai ◽  
Anwar Alhaq ◽  
Geoffrey F. Savidge

Abstract Factor XI deficiency (MIM 264900) is an autosomal bleeding disorder of variable clinical severity. In contrast to haemophilia A or B the clinical symptoms do not correlate well with plasma levels of factor XI; it is therefore difficult to predict the bleeding tendency from either the factor level or the molecular defect. FXI deficiency is particularly common in the Ashkenazi Jews with a heterozygous frequency of 9%, associated with two common founder mutations E117X (Type II) and F283L (Type III). However, factor XI deficiency is found in all ethnic groups, with causative mutations being highly heterogeneous - mutations having been described in all exons with the exception of the non-coding exon 1. In a study of >120 ethnically diverse factor XI deficient patients, three patients of Afro-Caribbean origin were found to be heterozygous for a G>A transition at nucleotide −53 within exon 1 of the factor XI gene. All three patients showed a low FXI:C on at least 3 different occasions (SM[female] 44.3–57.1, AB[female] 42.3–51.2 and GA[male] 70.3–72.9, Range 76–136u/dl). The 2 female patients were both reported to have a lupus anticoagulant which may explain the lower levels seen, although a lupus screen was negative. No variation within the coding sequence of the factor XI gene was detected. Two of the patients were heterozygous for the −403 G>T promoter polymorphism, whilst the remaining patient was homozygous for the −403 T allele and heterozygous for the −273 C>G polymorphism. Analysis of >50 factor XI alleles in patients of Afro-Caribbean origin failed to detect this base change in individuals with normal factor XI levels. Purine-rich sequences, such as that in exon 1 affected by the −53 G>A substitution, are known to form extremely stable minihairpin loops. These sequences /structures have been shown to be important as splicing enhancers and in mRNA stability, particularly in making them more resistant to nucleases. Within the 5′ untranslated region (5′-UTR) of genes they have been demonstrated to be important in modulating translation efficiency. The -53 G>A substitution is located just 10 bases prior to the start of the factor XI mRNA and any of these mechanism could potentially explain the causative nature of this change. The -53 G>A substitution is predicted to cause ‘slippage’ within the postulated minihairpin loop, potentially making it unstable. Further work is on-going to try and prove and explain the causality of this mutation. We speculate that the -53 G>A base change affects the normal processing of factor XI mRNA and, possibly in combination with the promoter polymorphisms, results in a mildly reduced plasma factor XI level.



Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2127-2127
Author(s):  
Henri M. H. Spronk ◽  
Sabine Wilhelm ◽  
Rene Van Oerle ◽  
Menno L. Knetsch ◽  
David Gailani ◽  
...  

Abstract Abstract 2127 Poster Board II-102 Background: The revised model of coagulation proposes that factor XI (FXI) can be activated by thrombin, which is generated upon activation of the tissue factor (TF) pathway. This concept, however, has not been tested in vivo. A recent study questioned the existence of this feedback loop and suggested that factor XII (FXII) is the sole activator of FXI. Here, we analyze the feedback activation of FXI in plasma and in genetically altered mice. Methods and results: Fluorescence-based assays indicated that particle-bound thrombin caused thrombin generation in plasma both in the absence of TF and in the presence of active site inhibited factor VIIa. Thrombin failed to activate FXII and thrombin generation was almost completely abolished by an anti-FXIa antibody and in FXI-deficient plasma. Surface bound thrombin induced complex formation of FXI, with its major inhibitor C1 inhibitor, even in FXII-deficient plasma in a time and dose dependent manner. To determine if thrombin-driven FXI activation is important for hemostasis in vivo we used TF deficient mice (low TF), which have severely reduced thrombin formation. Low TF mice were crossed with mice deficient in one of the intrinsic pathway proteases FXII, FXI, or FIX. Double deficiency in TF and either FIX or FXI resulted in the intrauterine death of embryos due to hemorrhage. In contrast low TF/FXII-null mice were viable and the bleeding phenotype was unchanged from low TF animals. Conclusions: Surface-bound thrombin, a model for fibrin clot-protected thrombin, generates thrombin in a FXI dependent manner, independently from FXII. In addition to corroborating an amplifying role of FXI in thrombin generation, we provide the first evidence that at low TF levels FXI is essential in generating a sufficient ambient level of thrombin to permit embryonic development. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2227-2227 ◽  
Author(s):  
Frauke Bergmann ◽  
Andreas Czwalinna ◽  
Arndt Groening

Abstract Abstract 2227 Introduction: Protein Z (PZ) is a vitamin K-dependent protein. In hemostasis PZ has two functions: together with Factor Xa it forms an inhibiting complex with the PZ- dependent protease-inhibitor and it enhances binding of Thrombin to phospholipid surfaces. Therefore, low PZ levels may induce thrombosis or bleeding. The latter has been questioned by Vasse 2008 and in 1995 Kemkes-Matthes reported in 58% of patients (pts) with a bleeding history PZ deficiency as the only abnormality. Aim of the study: To evaluate if low PZ levels are associated with a bleeding tendency, we reviewed data of pts referred to or laboratory. PZ determination is part of our diagnostic work up, including whole blood count, PT, PTT, VWF/FVIII-complex, FXIII and platelet function studies. Material and Methods: Over a 1 year period we investigated PZ level in 173 pts. PZ concentration was determined by ELISA (Asserachrom Protein Z; Diagnostica Stago), a sandwich immunoassay using a mouse monoclonal antibody against PZ, normal range 1600 – 3300 μg/l, mean 2600 μg/l published by Miletich. Our normal range obtained by 62 donors 990–2490, mean 1740μg/l (+/− 2SD). PZ <1000μg/l is considered to be abnormal. Results: In 75/173 (43%) pts with a bleeding history (e.g. postoperative hemorrhage, epistaxis, menorrhagia) no coagulation abnormality was detected. In 41/98 (42%) low PZ level was the only abnormality (mean PZ 642, range 195–994). 57/98 (58%) were diagnosed with vWD n=17; platelet function disorders n=10 or ASA/drugs causing platelet dysfunction n=20, others n=10. In 21/57 (37%) low PZ level was detected additionally (mean PZ 699μg/l; range 219–949) and in the remaining 36/57 (mean PZ 1689; range 1036–2842). Conclusion: Surprisingly, in 24% of pts with a bleeding history the only abnormality was PZ deficiency. Therefore, we consider PZ determination a useful parameter in patients with a bleeding history after ruling out more common disorders. Low PZ levels may cause a coagulopathy in some pts. Disclosures: No relevant conflicts of interest to declare.



Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4235-4235
Author(s):  
Paula Acuña ◽  
Elena Monzón Manzano ◽  
Elena G Arias-Salgado ◽  
María Teresa Alvarez Román ◽  
Mónica Martín ◽  
...  

Abstract Introduction: Hematologists frequently face a percentage of patients with a mild bleeding tendency due to a haemostatic abnormality that cannot be identified with conventional laboratory techniques. Such patients are termed as having an unclassified bleeding disorder (UBD). A good diagnosis is important in order to prevent bleedings during invasive processes and/or childbirth by choosing the optimal therapeutic treatment. We aimed to investigate hemostatic parameters that may be altered in patients with UBD in order to determine the cause of their bleeding symptoms. In particular, possible defects in the tissue factor (TF)-mediated regulation of coagulation or in the plasmin generation during the fibrinolysis, as well as the possible beneficial effects of treatment with antibodies blockers of TFPI. Methods: This is a single-centre, case-control, non-interventionist, prospective study. During an 8 months-period, 40 patients with bleeding symptoms (evaluated with ISTH-BAT score) were studied. Routine coagulation tests (aPTT and PT) and platelet function testing [aggregometry, PFA-100, flow cytometry and Total Thrombus-formation Analysis System (T-TAS; Zarcos, Japan)] were performed. In 17 patients, no abnormalities were detected in platelet function and/or in coagulation tests; so the following procedures were performed: Thrombin generation test by Calibrated automated thrombography (CAT) in samples of platelet poor plasma with corn trypsin inhibitor (CTI), an inhibitor of contact activation phase, using a low amount of TF (1 pM TF and 4 µM phospholipids) as a trigger to allow the evaluation of the TF-dependent pathway. Plasmin generation (PG) test with a kit from Synapse Research Institute (Maastricht, The Netherlands), using Thrombinoscope software. TFPI activity in plasma, measured with ACTICHROME® TFPI kit (Biomedica Diagnostics, USA). The effects of rFVIIa (Novoseven, NovoNordisk; 90 µg/kg) and of a human Anti-TFPI recombinant Ab (clon mAb2021, Creative Biolabs; 400 ng/ml) were tested in CAT, PG and TFPI activity tests. Results: Those patients with aPTT, PT and a platelet function within normal range were further studied performing thrombin generation, plasmin generation and TFPI activity tests. Table 1 shows the results obtained. Samples from patients 1, 2, 4, 7, 8, 9 and 10 had a diminished generation of thrombin, and in vitro treatment with anti-TFPI and rFVIIa only ameliorated thrombin generation in samples from patients 4, 7, 8 and 9. Plasma from patients 8 and 10 had increased activity of TFPI. Generation of thrombin in samples from patients 3, 5, 6 and 11 was within normal range. Plasmin generation was increased and not modified by in vitro treatment with anti-TFPI and rFVIIa in samples 3 and 11; whereas samples 5 (with normal plasmin generation) and 6 (with no data of plasmin generation due to lack of enough sample) had a high TFPI activity in plasma that was inhibited by anti-TFPI. Normal values in all these parameters evaluated were found in six patients, indicating the involvement of different mechanisms that are still unknown. Conclusions: UBD have a diverse pathological basis for the bleeding. So, a single laboratory test to make a correct diagnosis of this pathology cannot be recommended. In accordance with this fact, a personalized treatment should be applied for each patient. Non-conventional laboratory tests need to be standardized and included for studying possible defects in the regulation of TF and/or plasmin pathways that can be involved in very rare mild bleeding phenotypes. TFPI inhibition might emerge as a good therapy for some of these patients. Failure to detect the bleeding cause in some of these patients, suggests the need to perform further studies in this field. This work was supported by Novo Nordisk Pharma S.A. Table 1- Thrombin and plasmin generation and TFPI activity in samples of patients with UBD. Results out of normal range are shown in red. LT: lagtime; ETP: endogenous thrombin potential; EPP: endogenous plasmin potential; TFPI: Tissue factor pathway inhibitor. Figure 1 Figure 1. Disclosures Alvarez Román: Grifols: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; Bayer: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; CSL-Behring: Consultancy, Honoraria, Research Funding; Biomarin: Consultancy, Honoraria, Research Funding; Novo-Nordisk: Consultancy, Honoraria, Research Funding; Octapharma: Consultancy, Honoraria, Research Funding; Sobi: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding. Martín: Novo Nordisk: Speakers Bureau; Pfizer: Speakers Bureau. Jiménez-Yuste: F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Research Funding; BioMarin: Consultancy; Takeda: Consultancy, Honoraria, Research Funding; Bayer: Consultancy, Honoraria, Research Funding; Sobi: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria, Research Funding; CSL Behring: Consultancy, Honoraria, Research Funding; Sanofi: Consultancy, Honoraria, Research Funding; Octapharma: Consultancy, Honoraria, Research Funding; NovoNordisk: Consultancy, Honoraria, Research Funding; Grifols: Consultancy, Honoraria, Research Funding. Canales: Eusa Pharma: Consultancy, Honoraria; Sandoz: Honoraria, Speakers Bureau; Sanofi: Consultancy; Karyopharm: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Incyte: Consultancy; Gilead/Kite: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Speakers Bureau; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; iQone: Honoraria; Celgene/Bristol-Myers Squibb: Consultancy, Honoraria. Butta: Novo-Nordisk: Speakers Bureau; Takeda: Research Funding, Speakers Bureau; Roche: Speakers Bureau; CSL-Behring: Research Funding.



1995 ◽  
Vol 73 (02) ◽  
pp. 194-202 ◽  
Author(s):  
P H B Bolton-Maggs ◽  
D A Patterson ◽  
R T Wensley ◽  
E G D Tuddenham

SummaryIndividuals with severe factor XI deficiency are prone to excessive bleeding after injury or surgery, but the existence of a haemorrhagic tendency in partial factor XI deficiency is controversial. In this study, 172 members of 30 kindreds (20 non-Jewish) transmitting factor XI deficiency in North West England were interviewed and a bleeding history questionnaire completed. Blood was taken for coagulation assays. The questionnaires were categorised independently by two assessors to determine presence or absence of a bleeding tendency, in the absence of information about the factor XI level or family history. Analysis shows that 48% of heterozygotes have a bleeding tendency. Eighteen (60%) families came to attention because of bleeding problems in heterozygotes. Comparison of histories between partially deficient and non-deficient individuals demonstrated a higher incidence of menstrual problems, an increase in significant bruising, and an increased likelihood of excessive bleeding after tonsillectomy and dental extractions.The incidence of von Willebrand’s disease was not increased, but individuals with heterozygous factor XI deficiency who were bleeders tended to have lower levels of factor VIIIc and von Willebrand factor, and were more commonly of blood group 0. These features may contribute to the bleeding tendency. There was no evidence of alteration in factor VII activity (as defined by the ratio of activity to antigen) between the bleeders and non-bleeders.This is convincing evidence for abnormal bleeding in factor XI deficiency which is not confined to severely deficient patients.



2019 ◽  
Vol 39 (04) ◽  
pp. 398-403
Author(s):  
Doris Barcellona ◽  
Giovanni Favuzzi ◽  
Maria Luigia Vannini ◽  
Sebastiana Maria Piras ◽  
Maria Filomena Ruberto ◽  
...  

Introduction Factor XI (FXI) deficiency is a bleeding disorder which causes a bleeding tendency after trauma or surgery. An inhibitor may be acquired secondary to replacement therapy. Aim To study on genetical and functional grounds a family admitted to our Haemostasis and Thrombosis Centre for an incidental finding of a prolonged activated partial thromboplastin time (aPTT) in three members. Methods aPTT mixing test, dosage of FXI activity and antigen, FXI inhibitor titration, DNA analysis and clot waveform analysis (CWA) were performed. Results Patients II.1, II.3 and II.4 showed a severe FXI deficiency (0.7, 0.7 and 1.8%, respectively) and low antigen level. Since the proposita was already treated with plasma, the dosage of the inhibitor was determined to be 6.4 Bethesda units. They were homozygous for the p.Glu117Stop mutation. The other family members were heterozygous. The velocity and the maximum acceleration of the clot formation were lower than those of the other family members and the normal subjects but higher than those of patients with acquired haemophilia A. Conclusion A mixing test of a prolonged aPTT should be performed because it will be present both in patients with or without the inhibitor. A molecular analysis in severe FXI deficiency is warranted as it may have prognostic significance. CWA may be helpful for better understanding the pathophysiology of this kind of defect.



Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1035-1035
Author(s):  
Jayson M. Stoffman ◽  
Bernard N. Chodirker ◽  
Sara J. Israels

Abstract Noonan syndrome (NS) is an autosomal dominant disorder that includes short stature, characteristic facies, congenital heart defect, webbed neck, and developmental delay. A mutation in the PTPN11 gene can be identified in 50% of patients. A bleeding tendency is included in the phenotypic spectrum, with factor XI deficiency and platelet abnormalities described most frequently. At Winnipeg’s Health Sciences Centre, 24 patients with features typical of NS have been studied by the Special Haemostasis Laboratory. Four patients in whom the diagnosis was suspected but not considered definite are also included in this analysis. Clinical complaints included easy bruising (9), epistaxis (2), menorrhagia (1), and a family history of bleeding problems (3). Sixteen patients were referred for investigation following the diagnosis of NS. All 28 patients had coagulation screening tests: 16 patients had an abnormal PT and 12 had an abnormal aPTT. Thrombin time was slightly prolonged in 6 of 23 patients. Reptilase time was normal in 8 patients, and fibrinogen concentration was normal in 20 patients. Factor XI levels were measured in 14 patients, with a mean value of 62% (range 32–99%). Only 2 patients had levels below the normal range. One of 13 patients evaluated for FXII levels was deficient (FXII 25%), and 2 of 19 patients evaluated for FIX levels had mild FIX deficiency (FIX 40 and 49%) without symptomatic bleeding. No other factor deficiencies were identified. Twenty-four patients had determinations of von Willebrand Factor antigen and activity; 2 had results consistent with mild Type 1 von Willebrand Disease. Platelet aggregation studies were done in 22 patients. A variety of abnormalities were noted, with the most frequent being abnormal aggregation with epinephrine (7/22). Dense granule number was decreased in 2 of 7 samples studied by electron microscopy. Lupus anticoagulants were detected in 3 of 13 patients screened. Thrombophilia investigations in 4 patients detected decreased protein S in one patient who had been diagnosed previously with protein S deficiency. This unselected case series, the largest reported to date in the literature, illustrates the heterogeneity of coagulation abnormalities that may occur in NS. Symptoms, when present, were mild, and often did not correlate with laboratory abnormalities. Non-specific platelet aggregation defects were the most commonly identified abnormalities. In contrast to the literature, factor XI deficiency was not prevalent. A specific etiology for the variable bleeding tendency has not yet been identified in NS.



Sign in / Sign up

Export Citation Format

Share Document