scholarly journals Study on the Efficacy of a JAK Inhibitor Pharmacological Agent As Inducer of Fetal Hemoglobin Production in Cultured Erythroid Precursors from Sickle Cell and Beta-Thalassemia Patients

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2048-2048
Author(s):  
Alice Pecoraro ◽  
Antonio Troia ◽  
Angela Vitrano ◽  
Rosario Di Maggio ◽  
Massimiliano Sacco ◽  
...  

Abstract Phenotypic improvement of hemoglobinopathies such as sickle cell disease and beta-thalassemia (beta-thal) has been shown in patients with high levels of fetal hemoglobin (HbF). In sickle cell disease (SCD) the beneficial effects of HbF are due to the inhibition of HbS polymerization and to the dilution of HbS determining the reduction of sickling and vascular occlusion. Moreover, in beta-thal, high levels of gamma-chains combined with the redundant alpha-chains, lead to a reduction of dyserythropoiesis and of the requirement for blood transfusions. The only drug approved for the treatment of adult patients with SCD and that has been entered in clinical practice of patients affected by beta-thal is hydroxyurea (HU); however there is a great variability in the responses of patients to HU, in fact some patients are good responder, while others exhibit little or no change in HbF levels after HU treatment; moreover a decrease in the efficacy during long term treatment was observed. Other pharmacological compounds, including 5-azacytidine and thalidomide have been shown to increase HbF production. Due to concerns about the safety of this agents, their use was limited to severe cases for whom conventional therapy was unfeasible. For this reason the search of new inducers of HbF production is important. Ruxolitinib is a JAK inhibitor and decreases the phosphorilation of STAT (Signal transducers and activators of transcription) family proteins, in particular STAT5 and STAT3. Phosphorylation of STAT5 is essential for basal erythropoiesis and for its acceleration during stress erythropoiesis. STAT3 plays an essential role in regulating gene expression of several genes involved in cell growth and apoptosis, in particular it was demonstrated to inhibit gamma-globin gene expression. The decrease of STAT3 phoshorilation could decrease the inhibition of gamma-globin gene expression; for this reason we considered ruxolitinib a candidate as inducer of HbF production. In our laboratory an ex vivo system was developed predictive of the in vivo response to hydroxyurea treatment by using liquid erythroid cultures, an in vitro culture system that recapitulates the process of human erythropoiesis. To evaluate the efficacy of ruxolitinib in increasing gamma-globin gene expression we carried out a study in vitro using liquid erythroid cultures. In this study we developed and exposed to ruxolitinib liquid erythroid precursors from 4 SCD and 17 beta-thal intermedia (beta-TI) patients. The use of quantitative Real-Time-polymerase chain reaction allowed us to determine the increase in gamma-globin mRNA expression in human erythroid cells treated with ruxolitinib compared to untreated cells. The results are summarized in Table 1 and showed that ruxolitinib at 200nM is able to determine a significant increase of gamma-globin gene expression (3.4±0.1)compared to HU (2.0± 0.2). In conclusion our study suggests that ruxolitinib could be considered an inducer of HbF and could be used in vivo for the treatment of hemoglobinopathies, particularly in patients who do not respond to HU therapy or who show a decreased response after long-term treatment. Table 1. Fold increase of Gamma-globin gene expression in presence of Ruxolitinib in erythroid cultured cells. Patient Sex Genotype gamma-globin mRNA fold increasein the presence of ruxolitinib #1 M b039/aaa +1 #2 F b039/aaa +1.65 #3 F b039/b039 +1.9 #4 F b039/IVS1,110 +1.5 #5 M IVS1,1/aaa +2.5 #6 M IVS1,110/IVS1,1 +9.2 #7 M b039/bs +6 #8 F bs/b039 +1.6 #9 F b039/IVS1,6 +1.7 #10 M IVS1,6/frcd6 +3 #11 M IVS1,6/bs +2.5 #12 M IVS1,6/frcd6 +8 #13 F IVS1,6/b039 +9 #14 M IVS1,1/b039 +2.2 #15 M db/IVS1,110 +8 #16 F db/IVS1,110 +1.8 #17 F IVS2,1/aaa +3.9 #18 M b039/-101 +1.4 #19 M IVS1,6/b039 +1 #20 M bs/IVS1,110 +1.4 #21 M IVS1,6/IVS1,6 +1.9 Disclosures No relevant conflicts of interest to declare.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alice Pecoraro ◽  
Antonio Troia ◽  
Aurelio Maggio ◽  
Rosalba Di Marzo

High levels of HbF may ameliorate the clinical course of β-thalassaemia and SCD. Hydroxyurea (HU) is the only HbF inducer approved for the treatment of patients. However not all patients respond to the treatment, for this reason it is noteworthy to identify new HbF inducers. Ruxolitinib is a JAK inhibitor that decreases the phosphorilation of STAT proteins. In particular STAT3 is a repressor of gamma-globin gene. The decrease of STAT3 phosphorilation could derepress gamma-globin gene and reactivate its trascription. In this study we evaluated the efficacy of ruxolitinib as inducer of HbF production. The analyses were performed in cultured erythroid progenitors from 16 beta-thalassemia intermedia (TI) and 4 sickle cell disease (SCD) patients. The use of quantitative RT-PCR technique allowed us to determine the increase of gamma-globin mRNA expression in human erythroid cultured cells treated with ruxolitinib. The results of our study demonstrated an increase in vitro of gamma-globin mRNA expression in almost all patients. These data suggest that ruxolitinib could be a good candidate to be used in vivo for the treatment of hemoglobinopathies.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1216-1216
Author(s):  
Antonello Mai ◽  
Silvio Massa ◽  
Antonella Di Noia ◽  
Katija Jelicic ◽  
Elena Alfani ◽  
...  

Abstract Post-natal pharmacological reactivation of HbF, by restoring the unbalanced α/non-α globin chain production in red cells of patients affected by β-thalassemia or sickle cell anemia, represents a potential cure for these diseases. Many classes of compounds have been identified capable to induce Hb F synthesis in vitro by acting at different levels of the globin gene expression regulatory machinery. One of these classes is represented by inhibitors of a family of enzymes, the histone deacetylases (HDACs), involved in chromatin remodelling and gene transcription regulation. HDACs act in multi-protein complexes that remove acetyl groups from lysine residues on several proteins, including histones and are divided into three distinct structural classes, depending on whether their catalytic activity is zinc (class I/II)- or NAD+ (class III)-dependent. The effects of the HDACs inhibitors identified so far on HbF synthesis is, however, modest and often associated with high toxicity. Therefore, the potential of their clinical use is unclear. We have recently described a new family of synthetic HDACs inhibitors, the Aroyl-pyrrolyl-hydroxy-amides (APHAs), that induce differentiation, growth arrest and/or apoptosis of transformed cell in culture [Mai A et al, J Med Chem2004;47:1098]. In this study, we investigate the capability of 10 different APHA compounds to induce Hb F in two in vitro assays. One assay is based on the ability of APHA compounds to activate either the human Aγ-driven Firefly (Aγ-F) or the β-promoter drives Renilla Luciferase (β-R) reporter in GM979 cells stably transfected with a Dual Luciferase Reporter construct. The second assay is represented by the induction of γ-globin expression (by quantitative RT-PCR) in primary adult erythroblasts obtained in HEMA cultures of mononuclear cells from normal donors. The majority of the compounds tested did not significantly increased the Aγ−F (Aγ−F+β−R) reporter ratio in GM979 cells. However, the compound MC1575 increased by 3-fold (from 0.09 to 0.30) the reporter ratio in GM979 cells at a concentration of 20 μM, with modest effects of the proliferation activity of GM979 cells over the three days of the assay. When MC1575 was added at a concentration of 2–10 μM in cultures of primary adult erythroblasts induced to differentiate in serum-free media for 4 days, it induced a three fold increase of the γ/(γ+β) globin ratio (from 0.04 to 0.12), with no apparent cellular toxicity. Among the HDAC inhibitors tested in this study, MC1575 was not the most potent inhibitor of total enzyme activity. However, it was the compound that most selectively inhibited the activity of the maize homologue of mammalian class IIa HDAC enzymes [Mai et al, J Med Chem2003;46:4826]. These results are consistent with the hypothesis that each class of histone deacetylases might have a specific biological function and indicate that those of class IIa might represent the enzymes most specifically involved in globin gene regulation. We suggest that, by targeting the chemical inhibitors toward the catalytic domain of this class of enzymes, it should be possible to identify more specific, more potent and less toxic compounds for pharmacological treatment of β-thalassemia or sickle cell anemia.


1994 ◽  
Vol 88 (3) ◽  
pp. 555-561 ◽  
Author(s):  
Susan P. Perrine ◽  
George H. Dover ◽  
Pratibha Daftari ◽  
Carol T. Walsh ◽  
YuXin Jin ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1470-1474 ◽  
Author(s):  
GF Atweh ◽  
XX Zhu ◽  
HE Brickner ◽  
CH Dowling ◽  
HH Jr Kazazian ◽  
...  

A new type of delta beta-thalassemia characterized by decreased expression of the beta-globin gene and increased expression of both G gamma and A gamma globin gene in the absence of a detectable deletion has recently been described in the Chinese population. In this study we characterize the mutant beta-globin gene from this delta beta- thalassemia chromosome. An A to G transversion is identified in the “ATA” sequence of the promoter region that leads to decreased expression of the beta-globin gene in vivo and in vitro. We also demonstrate the presence of this mutation in every individual with a high fetal hemoglobin phenotype in this family and its absence in every individual with a normal hemoglobin phenotype. This same promoter mutation has recently been detected in Chinese beta-thalassemia genes where it is present on chromosomes of the same haplotype as that of the delta beta-thalassemia chromosome we are studying. These data support the hypothesis that an as yet unidentified mutation occurred on the ancestral chromosome carrying the promoter mutation and subsequently gave rise to the delta beta-thalassemia phenotype.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document