Alterations in Protein-DNA Interactions in the γ-Globin Gene Promoter in Response to Butyrate Therapy

Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2048-2048
Author(s):  
Alice Pecoraro ◽  
Antonio Troia ◽  
Angela Vitrano ◽  
Rosario Di Maggio ◽  
Massimiliano Sacco ◽  
...  

Abstract Phenotypic improvement of hemoglobinopathies such as sickle cell disease and beta-thalassemia (beta-thal) has been shown in patients with high levels of fetal hemoglobin (HbF). In sickle cell disease (SCD) the beneficial effects of HbF are due to the inhibition of HbS polymerization and to the dilution of HbS determining the reduction of sickling and vascular occlusion. Moreover, in beta-thal, high levels of gamma-chains combined with the redundant alpha-chains, lead to a reduction of dyserythropoiesis and of the requirement for blood transfusions. The only drug approved for the treatment of adult patients with SCD and that has been entered in clinical practice of patients affected by beta-thal is hydroxyurea (HU); however there is a great variability in the responses of patients to HU, in fact some patients are good responder, while others exhibit little or no change in HbF levels after HU treatment; moreover a decrease in the efficacy during long term treatment was observed. Other pharmacological compounds, including 5-azacytidine and thalidomide have been shown to increase HbF production. Due to concerns about the safety of this agents, their use was limited to severe cases for whom conventional therapy was unfeasible. For this reason the search of new inducers of HbF production is important. Ruxolitinib is a JAK inhibitor and decreases the phosphorilation of STAT (Signal transducers and activators of transcription) family proteins, in particular STAT5 and STAT3. Phosphorylation of STAT5 is essential for basal erythropoiesis and for its acceleration during stress erythropoiesis. STAT3 plays an essential role in regulating gene expression of several genes involved in cell growth and apoptosis, in particular it was demonstrated to inhibit gamma-globin gene expression. The decrease of STAT3 phoshorilation could decrease the inhibition of gamma-globin gene expression; for this reason we considered ruxolitinib a candidate as inducer of HbF production. In our laboratory an ex vivo system was developed predictive of the in vivo response to hydroxyurea treatment by using liquid erythroid cultures, an in vitro culture system that recapitulates the process of human erythropoiesis. To evaluate the efficacy of ruxolitinib in increasing gamma-globin gene expression we carried out a study in vitro using liquid erythroid cultures. In this study we developed and exposed to ruxolitinib liquid erythroid precursors from 4 SCD and 17 beta-thal intermedia (beta-TI) patients. The use of quantitative Real-Time-polymerase chain reaction allowed us to determine the increase in gamma-globin mRNA expression in human erythroid cells treated with ruxolitinib compared to untreated cells. The results are summarized in Table 1 and showed that ruxolitinib at 200nM is able to determine a significant increase of gamma-globin gene expression (3.4±0.1)compared to HU (2.0± 0.2). In conclusion our study suggests that ruxolitinib could be considered an inducer of HbF and could be used in vivo for the treatment of hemoglobinopathies, particularly in patients who do not respond to HU therapy or who show a decreased response after long-term treatment. Table 1. Fold increase of Gamma-globin gene expression in presence of Ruxolitinib in erythroid cultured cells. Patient Sex Genotype gamma-globin mRNA fold increasein the presence of ruxolitinib #1 M b039/aaa +1 #2 F b039/aaa +1.65 #3 F b039/b039 +1.9 #4 F b039/IVS1,110 +1.5 #5 M IVS1,1/aaa +2.5 #6 M IVS1,110/IVS1,1 +9.2 #7 M b039/bs +6 #8 F bs/b039 +1.6 #9 F b039/IVS1,6 +1.7 #10 M IVS1,6/frcd6 +3 #11 M IVS1,6/bs +2.5 #12 M IVS1,6/frcd6 +8 #13 F IVS1,6/b039 +9 #14 M IVS1,1/b039 +2.2 #15 M db/IVS1,110 +8 #16 F db/IVS1,110 +1.8 #17 F IVS2,1/aaa +3.9 #18 M b039/-101 +1.4 #19 M IVS1,6/b039 +1 #20 M bs/IVS1,110 +1.4 #21 M IVS1,6/IVS1,6 +1.9 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5485-5485
Author(s):  
Eleni Papanikolaou ◽  
Maria Georgomanoli ◽  
Nicholas P. Anagnou

Abstract Lentiviral vectors for γ-globin genes are being developed as an efficient tool for the gene therapy of β-chain hemoglobinopathies. The γ-globin gene has been chosen as a therapeutic gene based on the potent anti-sickling properties of γ-globins and on their ability to bind free α-chains. However, their development has been hampered by low titers, variable expression and gene silencing. To address these problems, we have initiated a strategy to exploit novel regulatory elements of the β-cluster conferring high level and sustained globin gene expression. To this end, we have successfully used the HPFH-2 enhancer combined with a 210 bp Aγ-globin gene promoter harboring the Greek HPFH -117 mutation and the HS-40 enhancer from the α-globin locus, in a series of oncoretrovirus vectors (Fragkos et al. Gene Ther12:1591–1600, 2005). Based on the high level of expression of the Aγ-gene (248 ± 99 % per copy of mouse α-globin) and the absence of vector silencing of these vectors and to further exploit the superior transducing efficiency of hematopoietic stem cells by lentiviral vectors, in the present study we have generated two novel self-inactivating lentiviral vectors containing the above regulatory elements. Specifically, vector GGHI contains an expression cassette for Aγ-globin gene linked to the 210 bp Aγ-gene promoter with the Greek HPFH -117 point mutation, the HS-40 enhancer at its 5′ end and the HPFH-2 enhancer at its 3′ end, as well as the cHS4 insulator in the 3′ LTR. The second vector, designated GGHI/PM is essentially similar to GGHI but carries also the MGMT-140K cDNA selectable marker under the control of PGK promoter, to enrich for genetically modified cells. Both vectors exhibited high titers of 108 TU/ml, for GGHI and 107 TU/ml, for GGH/PM. Their efficiency was tested in MEL-585 cells transduced at an MOI of 1–100 and a series of independent clones were generated. The clones were further induced to differentiate using hemin and HMBA and the level of expression of the Aγ-globin transgene was determined by Real Time PCR and by flow cytometry. Vector GGHI was expressed at 237 ± 369 % per copy of mouse α-globin with a mean copy number of 19.3 in 8 individual clones, while GGHI/PM was expressed only at 10 ± 16 % per copy of mouse α-globin, with a mean copy number of 60 in 10 individual clones of unselected cells. FACS analysis using an anti-γ-globin antibody, revealed a pancellular expression of γ-globin (mean MFI 69.7 for GGHI and mean MFI 40.15 for GGHI/PM), while there was no expression of the transgene in undifferentiated MEL-585 cells, suggesting that both vectors are erythroid-specific. Moreover, there was no sign of transgene silencing in any of the above clones. The results for the novel GGHI vector, are consistent with our previous studies and reflect a) the robust synergistic capacity of the HS-40 and HPFH-2 elements to enhance transcription, b) the ability of HPFH-2 to reduce the rate of gene silencing and c) the ability of the -117 point mutation to support the Aγ-globin gene expression in the adult erythroid environment, for the first time, in the context of lentiviral vectors. This extremely high level of expression if achieved in vivo, would clearly exceed the proposed therapeutic threshold for the β-chain hemoglobinopathies. Current studies combine their assessment on CD34+ cells from patients with β-thalassemia as well as their evaluation in vivo using the Hbthal3+/− thalassemic mouse model.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 812-812
Author(s):  
Mudit Chaand ◽  
Chris Fiore ◽  
Brian T Johnston ◽  
Diane H Moon ◽  
John P Carulli ◽  
...  

Human beta-like globin gene expression is developmentally regulated. Erythroblasts (EBs) derived from fetal tissues, such as umbilical cord blood (CB), primarily express gamma globin mRNA (HBG) and HbF, while EBs derived from adult tissues, such as bone marrow (BM), predominantly express beta globin mRNA (HBB) and adult hemoglobin. Human genetics has validated de-repression of HBG in adult EBs as a powerful therapeutic paradigm in diseases involving defective HBB, such as sickle cell anemia. To identify novel factors involved in the switch from HBG to HBB expression, and to better understand the global regulatory networks driving the fetal and adult cell states, we performed transcriptome profiling (RNA-seq) and chromatin accessibility profiling (ATAC-seq) on sorted EB cell populations from CB or BM. This approach improves upon previous studies that used unsorted cells (Huang J, Dev Cell 2016) or that did not measure chromatin accessibility (Yan H, Am J Hematol 2018). CD34+ cells from CB and BM were differentiated using a 3-phase in vitro culture system (Giarratana M, Blood 2011). Fluorescence-activated cell sorting and the cell surface markers CD36 and GYPA were used to isolate 7 discrete populations, with each sorting gate representing increasingly mature, stage-matched EBs from CB or BM (Fig 1A, B). RNA-seq analysis revealed expected expression patterns of the beta-like globins, with total levels increasing during erythroid maturation and primarily composed of HBB or HBG transcripts in BM or CB, respectively (Fig 1C). Erythroid maturation led to progressive increases in chromatin accessibility at the HBB promoter in BM populations. In CB-derived cells, erythroid maturation led to progressive increases in chromatin accessibility at the HBG promoters through the CD36+GYPA+ stage (Pops 1-5). Chromatin accessibility shifted from the HBG promoters to the HBB promoter during the final stages of differentiation (Pops 6-7), suggesting that HBG gene activation is transient in CB EBs (Fig 1D). Hierarchical clustering and principal component analysis of ATAC-seq data revealed that cell populations cluster based on differentiation stage rather than by BM or CB lineage, suggesting most molecular changes are stage-specific, not lineage-specific (Fig 2A, B). To identify transcription factors driving cell state, and potentially beta-like globin expression preference, we searched for DNA binding motifs within regions of differential chromatin accessibility and found NFI factor motifs enriched under peaks that were larger in BM relative to CB (Fig 2C). Transcription factor footprinting analysis showed that both flanking accessibility and footprint depth at NFI motifs were also increased in BM relative to CB (Fig 2D). Increased chromatin accessibility was observed at the NFIX promoter in BM relative to CB populations, and in HUDEP-2 relative to HUDEP-1 cell lines (Fig 2E). Furthermore, accessibility at the NFIX promoter correlated with elevated NFIX mRNA in BM and HUDEP-2 relative to CB and HUDEP-1, respectively. Together these data implicated NFIX in HbF repression, a finding consistent with previous genome-wide association and DNA methylation studies that suggested a possible role for NFIX in regulating beta-like globin gene expression (Fabrice D, Nat Genet 2016; Lessard S, Genome Med 2015). To directly test the hypothesis that NFIX represses HbF, short hairpin RNAs were used to knockdown (KD) NFIX in primary erythroblasts derived from human CD34+ BM cells (Fig 3A). NFIX KD led to a time-dependent induction of HBG mRNA, HbF, and F-cells comparable to KD of the known HbF repressor BCL11A (Fig 3B-D). A similar effect on HbF was observed in HUDEP-2 cells following NFIX KD (Fig 3E). Consistent with HbF induction, NFIX KD also increased chromatin accessibility and decreased DNA methylation at the HBG promoters in primary EBs (Fig 3F, G). NFIX KD led to a delay in erythroid differentiation as measured by CD36 and GYPA expression (Fig 3H). Despite this delay, by day 14 a high proportion of fully enucleated erythroblasts was observed, suggesting NFIX KD cells are capable of terminal differentiation (Fig 3H). Collectively, these data have enabled identification and validation of NFIX as a novel repressor of HbF, a finding that enhances the understanding of beta-like globin gene regulation and has potential implications in the development of therapeutics for sickle cell disease. Disclosures Chaand: Syros Pharmaceuticals: Employment, Equity Ownership. Fiore:Syros Pharmaceuticals: Employment, Equity Ownership. Johnston:Syros Pharmaceuticals: Employment, Equity Ownership. Moon:Syros Pharmaceuticals: Employment, Equity Ownership. Carulli:Syros Pharmaceuticals: Employment, Equity Ownership. Shearstone:Syros Pharmaceuticals: Employment, Equity Ownership.


1998 ◽  
Vol 136 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Masato Ikeda ◽  
Remco A Spanjaard ◽  
Elizabeth W Noordhoek ◽  
Akio Kawaguchi ◽  
Toshimasa Onaya ◽  
...  

Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 738-746 ◽  
Author(s):  
BL Tonkonow ◽  
R Hoffman ◽  
D Burger ◽  
JT Elder ◽  
EM Mazur ◽  
...  

Abstract The human leukemia cell line, K562, produces embryonic and fetal hemoglobins and glycophorin A, proteins normally associated only with erythroid cells. Hemoglobin accumulation is enhanced by exposure of the cells to 0.05 mM hemin. We have examined K562 cells before and after exposure to hemin to determine whether expression of these erythroid proteins was shared by all cells or confined to specific subpopulations. Globin gene expression was examined by quantitation of globin mRNA sequences, using a 3H-globin cDNA molecular hybridization probe. Constitutive cells produced globin mRNA, the content of which was increased 3–4-fold by hemin. Cell-to-cell distribution of globin mRNA was determined by in situ hybridization of 3H-globin cDNA to constitutive and hemin-treated K562 cells. Virtually all cells in the culture exhibited grain counts above background, indicating globin gene expression by all cells, rather than a confined subpopulation. Virtually all hemin-treated cells had 3–5-fold higher grain counts, indicating uniformly increased globin gene expression. The glycophorin content of K562 cells was estimated by fluorescence-activated cell sorting (FACS) of cells labeled with fluorescein-labeled antiglycophorin antiserum. The vast majority of constitutive cells contained glycophorin, but exhibited to apparent increase in glycophorin accumulation after hemin exposure. Thus, glycophorin and globin genes exhibited differential responses to hemin. These differences could reflect normal differences in the patterns of specialized gene expression in stem cells. Alternatively, different aberrations of gene expression could be occurring in response to the determinants of the neoplastic properties of K562.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1213-1213
Author(s):  
Kenneth R. Peterson ◽  
Halyna Fedosyuk ◽  
Susanna Harju

Abstract A 2.9 Kb deletion of 5′HS3 (Δ5′HS3) or a 234 bp deletion of the 5′HS3 core (Δ5′HS3c) in a 213 Kb human β-globin locus yeast artificial chromosome (β-YAC) abrogate ε-globin gene expression during primitive erythropoiesis in β-YAC transgenic mice, suggesting that HS sequences of the LCR are involved directly in ε-globin gene activation. The reduction of ε-globin gene transcription in Δ5′HS3 or Δ5′HS3c β-YAC transgenics can be explained by two hypotheses. The first is site-specificity. The interaction between the LCR and the ε-globin gene promoter involves specific sequences of 5′HS3 and specific sequences of the ε-globin gene promoter. When 5′HS3 or its core is deleted, these interactions do not take place and ε-globin gene transcription is diminished. The second hypothesis is change in conformation of the LCR. Normally, in the embryonic stage, the LCR achieves a three-dimensional conformation that favors interaction with the first gene in the complex, i.e., the ε-globin gene. When 5′HS3 is deleted, an alternate conformation is assumed that decreases the chance that there will be an interaction between the LCR and the ε-globin gene. However, the LCR interacts with the next gene in order, the γ-globin gene. In Δ5′HS3c β-YAC mice, γ-globin gene expression is normal during primitive erythropoiesis, but is extinguished in the fetal stage of definitive erythropoiesis. These data suggest that a conformational change occurs in the Δ5′HS3c LCR during the switch from embryonic to definitive erythropoiesis, from one that supports γ-globin gene expression to one that does not. Alternately, the embryonic trans-acting environment may allow the mutant LCR to interact with and activate the γ-globin genes, but the fetal trans-acting environment may not support this interaction in the absence of the 5′HS3 core. To distinguish between these possibilities, β-YAC lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to either an intact LCR, a 2.9 Kb 5′HS3 deletion or a 234 bp 5′HS3 core deletion. Δ5′HS3c Δε::βm β-YAC mice expressed βm-globin throughout development beginning at day 10 in the yolk sac. γ-globin was expressed in the embryonic yolk sac, but not in the fetal liver. Some wild-type β-globin was expressed in addition to βm-globin in adult mice. The γ-globin phenotype is consistent with published data on Δ5′HS3c β-YAC mice. Although ε-globin was not expressed in Δ5′HS3c β-YAC mice, βm-globin was expressed in Δ5′HS3c Δε::βm β-YAC embryos, demonstrating that the 5′HS3 core was necessary for ε-globin expression during embryonic erythropoiesis, but not for βm-globin expression. These data support a site specificity model of LCR HS-globin gene interaction. In addition, nuclear ligation experiments provided evidence for a specific physical interaction between 5′HS3 and the γ-globin promoter during fetal definitive erythropoiesis, further supporting a site specificity model.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1599-1599
Author(s):  
Ruiqiong Wu ◽  
Aurelie Desgardin ◽  
Stephen M. Jane ◽  
John M. Cunningham

Abstract Understanding the molecular mechanisms that regulate γ-globin gene expression is essential for development of new therapeutic strategies for individuals with sickle cell disease and β-thalassemia. We have previously identified a tissue- and developmentally- specific multiprotein transacting factor complex, the human stage selector protein (SSP), which facilitates the interaction of the g-globin gene promoters with the upstream locus control region enhancer in fetal erythoid cells. This complex interacts with the stage selector element (SSE) in the proximal g-globin promoter, a regulatory motif phylogenetically conserved in primate species with a distinct fetal stage of β-globin like gene expression. Given these observations, we hypothesized that a similar complex modulates γ-globin in the rhesus macaque, a non-human primate model that has been utilized to study β-globin like gene expression. We focused our efforts on NF-E4, given that a human isoform of this factor confers erythroid and fetal specificity to the SSP complex. Fetal liver erythroblasts were obtained from rhesus embryos and analyzed by reverse transcriptase(RT)-PCR analysis for NF-E4 expression. NF-E4 like transcripts were identified in day 60, 80 and 120 embryonic erythroblasts, but not other rhesus tissues, demonstrating an erythroid-specific pattern of expression. Utilizing 5′ RACE, we cloned a full length NF-E4 transcript, identifying an open reading frame encoding a 131 amino acid polypeptide. This 20kD polypeptide shares a high degree of homology with human NF-E4, especially in its carboxy-terminal domain. Like human NF-E4, GST pulldown chromatography confirmed the ability of the rhesus factor to interact directly with CP2 and ALY, the other core components of the SSP. To evaluate rNF-E4 function in vivo, we utilized retrovirally mediated gene transfer to enforce expression of this factor in K562 cells, a model of human fetal erythropoiesis. Initial co-immunoprecipitation studies confirmed the in vivo interaction of rNF-E4 with other components of the SSP. Interestingly, we observed a specific 3-fold induction of γ-globin gene expression in rNF-E4 expressing cells when compared to controls. Moreover, we demonstrated that, like enforced expression of human NF-E4, rNF-E4 induced a significant increase in ε-globin gene expression. Taken together, our results suggest a conservation of NF-E4 expression and function in species with a fetal stage of globin gene expression. Moreover, the identification of rNF-E4 provides a platform for the pre-clinical development of therapeutic agents that induce high levels of NF-E4 in adult erythroblasts.


Sign in / Sign up

Export Citation Format

Share Document