A Phase 1/2 Study of the Second Generation Selective Inhibitor of Nuclear Export (SINE) Compound, KPT-8602, in Patients with Relapsed Refractory Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4509-4509 ◽  
Author(s):  
R. Frank Cornell ◽  
Adriana C Rossi ◽  
Rachid Baz ◽  
Craig C Hofmeister ◽  
Chaim Shustik ◽  
...  

Abstract Introduction - Inhibition of Exportin 1 (XPO1) is a novel treatment approach for multiple myeloma (MM). XPO1 mediates the nuclear export of cell-cycle regulators and tumor suppressor proteins leading to their functional inactivation. In addition, XPO1 promotes the export and translation of the mRNA of key oncoproteins (e.g. c-MYC, BCL-2, Cyclin D). XPO1 overexpression occurs in solid and hematological malignancies, including MM and is essential for MM cell survival. Selinexor, the first oral SINE compound, has shown promising anti-MM activity in phase 1 studies but has been associated with gastrointestinal and constitutional toxicities including nausea, anorexia and fatigue. KPT-8602 is a second generation oral SINE compound with similar in vitro potency to selinexor, however, has substantially reduced brain penetration compared with selinexor, and demonstrated markedly improved tolerability with minimal anorexia and weight loss in preclinical toxicology studies. In murine models of MM, KPT-8602 can be dosed daily (QDx5) with minimal anorexia and weight loss. We have therefore initiated a phase 1/2 first-in-human clinical trial. Methods - This phase 1/2 clinical trial was designed to evaluate KPT-8602 as a single agent and in combination with low dose dexamethasone (dex) in patients (pts) with relapsed / refractory MM (RRMM). KPT-8602 is dosed orally (QDx5) for a 28-day cycle with a starting dose of 5 mg. Low dose dex (20 mg, twice weekly) is allowed after cycle 1 if at least a minimal response (MR) is not observed. The primary objective is to evaluate the safety and tolerability including dose-limiting toxicity (DLT), determine the maximum tolerated dose (MTD), the recommended Phase 2 dose (RP2D), and evidence for anti-MM activity for KPT-8602 single agent and in combination with dex. The pharmacokinetic (PK) and pharmacodynamic (PDn; XPO1 mRNA) profile of KPT-8602 will also be determined. PDn predictive biomarker analysis and ex vivo drug response assays are underway using tumor cells from bone marrow aspirates before treatment, during and at relapse. These analyses include cell death pathway assays by flow and nuclear/cytoplasmic localization of XPO1, NF-ƙB, IƙBα, IKKα, NRIF and p53 by imaging flow and IHC. Results - As of 01-Aug-2016, 6 pts 2 M/4 F, (median of 6 prior treatment regimens, median age of 71) with RRMM have been enrolled. Common related grade 1/2 adverse events (AEs) include thrombocytopenia (3 pts), nausea (2 pts) and diarrhea (2 pts). Grade 3 AEs include neutropenia (1 pt) and dehydration (1 pt). No grade 4 or 5 AEs have been reported. No DLTs have been observed and the MTD has not been reached. 5 pts were evaluable for responses (1 pt pending evaluation): 1 partial response, 1 minimal response, and 3 stable disease; no pts have progressed on therapy with the longest on for >5 months. The PK properties following oral administration showed that 5 mg of KPT-8602 was rapidly absorbed (mean tmax= 1 hr, mean Cmax= 30.6 ng/mL). The mean AUCinf was calculated to be 141 ng•hr/mL. After tmax, KPT-8602 declined at an estimated mean t½ of 4 hr. At the same dose level, XPO1 mRNA expression was the highest (~2.5 fold) at 8 hr post dose. Conclusions - Oral KPT-8602 is well tolerated in heavily pretreated pts with RRMM. Gastrointestinal and constitutional toxicities observed with twice weekly selinexor have not been observed with 5x/week KPT-8602, including in pts on study for >4 months. PK was predictable and in line with selinexor. These early results show encouraging disease control with pts remaining on therapy. Enrollment is on-going. Disclosures Rossi: Takeda: Speakers Bureau; Janssen: Speakers Bureau; Onyx: Research Funding, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. Baz:Takeda/Millennium: Research Funding; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Research Funding; Signal Genetics: Research Funding; Bristol-Myers Squibb: Research Funding; Merck: Research Funding; Novartis: Research Funding. Hofmeister:Karyopharm Therapeutics: Research Funding; Arno Therapeutics, Inc.: Research Funding; Signal Genetics, Inc.: Membership on an entity's Board of Directors or advisory committees; Janssen: Pharmaceutical Companies of Johnson & Johnson: Research Funding; Incyte, Corp: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Takeda Pharmaceutical Company: Research Funding; Teva: Membership on an entity's Board of Directors or advisory committees. Shustik:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millenium: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Richter:Amgen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Jannsen: Speakers Bureau. Chen:Janssen: Honoraria, Research Funding; Takeda: Research Funding; Celgene: Honoraria, Research Funding. Vogl:Takeda: Consultancy, Research Funding; Celgene: Consultancy; GSK: Research Funding; Calithera: Research Funding; Teva: Consultancy; Karyopharm: Consultancy; Acetylon: Research Funding; Constellation: Research Funding. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Baloglu:Karyopharm Therapeutics: Employment, Equity Ownership. Senapedis:Karyopharm Therapeutics: Employment, Equity Ownership. Ellis:Karyopharm Therapeutics: Employment, Equity Ownership. Friedlander:Karyopharm Therapeutics: Employment. Choe-Juliak:Karyopharm Therapeutics: Employment. Sullivan:Karyopharm Therapeutics: Research Funding. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 396-396 ◽  
Author(s):  
John Kuruvilla ◽  
John C. Byrd ◽  
Joseph M Flynn ◽  
Ramiro Garzon ◽  
Pierluigi Porcu ◽  
...  

Abstract Background: The nuclear export protein, XPO1 is overexpressed in all types of malignant lymphoma. The SINE selinexor (KPT-330) is a slowly reversible XPO1 antagonist that forces the nuclear retention and activation of over 10 tumor suppressor proteins (TSP) such as p53, IkB, FOXO and p21. In addition, selinexor inhibits the nuclear export and the translation of oncogenic mRNAs such as c-myc and Bcl-XL levels. Together these effects result in apoptosis of cancer cells in preclinical models of both T- and B- cell NHL. In DLBCL cell lines (n=10), selinexor induced potent cytotoxicity against both germinal center (GCB) and nonGCB including those with high MYC and/or BCL2/6 protein levels. Methods: Selinexor was administered orally for 4-10 doses in a 28-day cycle in this phase 1 study. Serial tumor biopsies were performed. Response evaluation was performed in cycle 1 and 2 and then every 2 cycles. All pts had heavily pretreated NHL with documented progressive disease (PD) on study entry. Results: 58 pts (34 males 24 females; median age 62 yrs; ECOG PS 0/1/2: 19/35/4; median prior regimens: 3) received selinexor across 13 dose levels (3 to 80 mg/m2). The recommended Phase 2 dose is 60 mg/m2 based on results across all Phase 1 studies. Grade 3/4 events (>5%) include thrombocytopenia (31%), neutropenia (22%), fatigue (10%), and anemia (7%). The most common Grade 1/2 AEs were: nausea (66%), anorexia (47%), fatigue (40%), and vomiting (40%) that were manageable with supportive care and were seen less frequently following cycle 1. Increases in XPO1 mRNA levels were observed at all doses and sustained for 4-48 hours, supporting twice weekly dosing. Tumor biopsies confirmed TSP nuclear localization, c-myc reductions, and apoptosis induction of cancer cells. Objective responses were observed in all classes of NHL studied (Table 1). An objective response rate (ORR) of 31% was observed across all NHL types. An ORR of 40% was observed in pts with rel/ref aggressive B-NHL (DLBCL, Follicular NHL grade 3b (FLgrd3b) and transformed NHL) at doses ³60 mg/m2 vs an ORR of 33% at 23-50 mg/m2 and 25% at ²20 mg/m2. Across all NHL types, time to best response was delayed, including 5 complete responses (CR) (4 in DLBCL and 1 T-NHL). Nine pts out of 34 have remained on therapy for >6-23 months without clinically significant cumulative toxicities or major organ dysfunction. Conclusions: Selinexor treatment is generally well tolerated with supportive care and can be given over a prolonged period. Durable single agent activity in pts with heavily pretreated NHL has been observed. Phase 2 studies in DLBCL, Richter's transformation and T-NHL of single agent selinexor as well as in combination with other agents including CD20 antibodies are expected to begin in the near future. Abstract 396. Table 1 Cancer Type Selinexor Dose (mg/m2) N* ORR (%) CR (%) PR (%) SD (%) PD (%) WC/NE (%) Aggressive B-NHL (DLBCL, FLgrd3b, Transformed) ≤20 4 1 (25%) -- 1 (25%) 1 (25%) 2 (50%) -- 20 – 50 21 7 (33%) 4 (19%) 3 (14%) 5 (24%) 6 (29%) 3 (14%) ≥60* 10 4 (40%) -- 4 (40%) 4 (40%) -- 2 (20%) Follicular & Other Indolent NHL ≤30 4 -- -- -- 4 (100%) -- -- ≥35 4 2 (50%) -- 2 (50%) 1 (25%) -- 1 (25%) Mantle Cell Lymphoma ≤30 2 1 (50%) -- 1 (50%) 1 (50%) -- -- ≥35 2 -- -- -- -- 1 (50%) 1 (50%) T-Cell Lymphoma ≤30 4 -- -- -- 2 (50%) -- 2 (50%) ≥35 1 1 (100%) 1 (100%) -- -- -- -- Richter's Transformation ≤30 3 1 (33%) -- 1 (33%) 2 (67%) -- -- ≥35 3 1 (33%) -- 1 (33%) -- -- 2 (67%) TOTAL 58 18 (31%) 5 (9%) 13 (22%) 20 (34%) 9 (16%) 11 (19%) * First pt in this population was dosed on 23-July-2012 ORR=Objective Response Rate; CR=Complete Response; PR=Partial Response; SD=Stable Disease; PD=Progressive Disease; WC=Withdrew Consent; NE=Non-Evaluable Disclosures Byrd: Pharmacyclics, Genentech: Research Funding. Porcu:Infinity: Research Funding; Seattle genetics: Research Funding; Actelion: Honoraria; Celgene: Honoraria; United States Cutaneous Lymphoma Consortium: Membership on an entity's Board of Directors or advisory committees; Cutaneous Lymphoma Foundation: Membership on an entity's Board of Directors or advisory committees. Stone:AbbVie, Inc: Consultancy; Agios: Consultancy; Amgen: Consultancy; Celator: Consultancy; Celgene: Consultancy; Roche: Consultancy. Baz:Celgene: Research Funding; Millennium: Research Funding; Bristol Myers Squibb: Research Funding; Karyopharm: Research Funding; Sanofi: Research Funding. Flinn:AstraZeneca: Research Funding. Kukreti:Celgene: Honoraria. Landesman:Karyopharm Therapeutics: Employment. Klebanov:Karyopharm Therpeutics: Employment. Shacham:Karyopharm Therapeutics: Employment. Saint-Martin:Karyopharm Therpeutics: Employment. Marshall:Karyopharm Therpeutics: Employment. McCartney:Karyopharm Therpeutics: Employment. McCauley:Karyopharm Therapeutics: Employment, Equity Ownership. Carlson:Karyopharm Therapeutics: Employment. Norori:Karyopharm Therpeutics: Consultancy. Savona:Karyopharm Therpeutics: Membership on an entity's Board of Directors or advisory committees. Rashal:Karyopharm Therapeutics: Employment. Mirza:Karyopharm Therpeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kauffman:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therpeutics: Employment, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3145-3145 ◽  
Author(s):  
Paul G. Richardson ◽  
Myo Htut ◽  
Cristina Gasparetto ◽  
Jeffrey A. Zonder ◽  
Thomas G. Martin ◽  
...  

Background: The bone marrow microenvironment of many multiple myeloma (MM) patients contains high levels of CD123-expressing plasmacytoid dendritic cells (pDCs). These pDCs have been shown to augment MM growth and contribute to drug resistance (Chauhan, et al., Cancer Cell, 2009). Tagraxofusp, a novel CD123 targeted therapy, has demonstrated high levels of anti-tumor activity in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN), an aggressive CD123+ malignancy of pDC origin. Tagraxofusp demonstrated potent in vitro and in vivo activity against MM cell lines and primary tumor samples via both a direct anti-MM effect and indirect pDC-targeting effect (Ray, et al., Leukemia, 2017), as well as demonstrating synergy in these systems when used in combination with traditional MM therapies including pomalidomide (POM). As such, targeting pDCs with tagraxofusp may offer a novel therapeutic approach in MM. Methods: This multicenter, single arm Phase 1/2 trial enrolled patients with relapsed or refractory (r/r) MM and tested two different doses of tagraxofusp (7 or 9 mcg/kg). Patients received tagraxofusp as a daily IV infusion for days 1-5 of a 28-day cycle as a single agent for the initial run-in cycle (cycle 0) and in combination with standard doses/administration of POM and dexamethasone (DEX) in cycles 1 and beyond. Objectives included evaluation of safety and tolerability, identification of the maximum tolerated or tested dose, and efficacy. Results: 9 patients with r/r MM received tagraxofusp (7 mcg/kg, n=7; 9 mcg/kg, n=2). 5 males, median age 65 years (range: 57-70), median 3 prior therapies (range 2-6). Median follow-up was 12 months (range: 7 - 19). The most common treatment-emergent AEs (TEAEs) were hypoalbuminemia 67% (6/9); chills, fatigue, insomnia, nausea and pyrexia each 56% (5/9); and dizziness, headache, hypophosphatemia, and thrombocytopenia each 44% (4/9). The most common grade 3 and 4 TEAEs were thrombocytopenia 44% (4/9) and neutropenia 33% (3/9). No grade 5 events reported. 5 patients treated with tagraxofusp and POM+DEX had a partial response (PR) after tumor evaluation. These patients demonstrated a rapid decrease in a set of myeloma-related laboratory values from pre-tagraxofusp treatment levels after the first combination cycle of tagraxofusp and POM+DEX. Additionally, these 5 patients demonstrated >50% decreases in peripheral blood pDC levels after both tagraxofusp monotherapy and combination therapy. Conclusions: Tagraxofusp was well-tolerated, with a predictable and manageable safety profile, when dosed in combination with POM+DEX in patients with r/r MM. Evidence of pDC suppression in peripheral blood and BM was observed in this patient population. 5 patients that received tagraxofusp and POM+DEX combination had PRs and decreases in pDC levels while on treatment with tagraxofusp. Given CD123 expression on pDCs in the tumor microenvironment and the potential synergy of tagraxofusp with certain MM agents including POM, tagraxofusp may offer a novel mechanism of action in MM. NCT02661022. Disclosures Richardson: Oncopeptides: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Zonder:Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Consultancy, Membership on an entity's Board of Directors or advisory committees. Martin:Roche and Juno: Consultancy; Amgen, Sanofi, Seattle Genetics: Research Funding. Chen:Stemline Therapeutics: Employment, Equity Ownership. Brooks:Stemline Therapeutics: Employment, Equity Ownership, Patents & Royalties. McDonald:Stemline Therapeutics: Employment, Equity Ownership. Rupprecht:Stemline Therapeutics: Employment, Equity Ownership. Wysowskyj:Stemline Therapeutics: Employment, Equity Ownership. Chauhan:C4 Therapeutics.: Equity Ownership; Stemline Therapeutics: Consultancy. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder .


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 599-599 ◽  
Author(s):  
Cristina J Gasparetto ◽  
Suzanne Lentzsch ◽  
Gary J. Schiller ◽  
William Bensinger ◽  
Nizar Bahlis ◽  
...  

Abstract Introduction - Selinexor is a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound that binds and inactivates Exportin 1 (XPO1). Selinexor with low dose dexamethasone (Sd) or in with protesome inhibitors (PIs) or immunomodulatory drugs (IMiDs), has shown anti-MM activity in patients (pts) with relapsed or refractory MM. Daratumumab (Dara), an anti-CD38 mAb, is approved for the treatment of heavily pretreated MM is limited by short PFS and an ORR of ~21% in quad-refractory MM. Selinexor in combiniation with dara have shown preclinical synergistic killing of MM cells. Methods - Pts were eligible if they had received ≥ 3 prior lines of anti-myeloma therapy, including a PI and an IMiD. Selinexor was dose-escalated in 2 concurrent cohorts: once-weekly (QW, at 100 mg) or twice-weekly (BIW, at 60 mg). Dara was 16 mg/kg IV (recommended schedule) and dexamethasone (dex) was 40 mg QW or 20 mg BIW. The objectives were to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D), safety, tolerability and preliminary efficacy of the combination of this SDd combination in pts with PI/IMiD refractory MM Results - As of Jul 20th2018, 25 pts (11 males / 14 females) have been enrolled. Three pts have been enrolled into the 60 mg BIW and 22 pts in the 100 mg QW cohorts. Pts have a median age of 68 years and a median of 3 (range, 2 - 10) prior treatment regimens. Common SDd treatment related adverse events included (all grades, grades 3/4): thrombocytopenia (58%, 42%), leukopenia (54%, 38%), anemia (46%, 29%), nausea (50%, 0%) and fatigue (46%, 8%). Two dose limiting toxicities (DLTs) were reported in the 60 mg BIW cohort: G3 thrombocytopenia and G2 fatigue requiring dose reduction in selinexor to 100 mg QW. In the 100 mg QW escalation cohort, 6 pts enrolled, 5 evaluable, with no DLTs. This cohort was expanded and enrollment is ongoing. A total of 21 pts were evaluable for response. In 19 dara-naïve pts, the ORR was 74% (5 VGPR, 9 PR, 2 MR, 2 SD, 1 PD), including 3 unconfirmed PRs, 1 unconfirmed MR. In the 2 pts with dara refractory MM, there was one PD and one SD. The longest duration of therapy is 13 months. Based on tolerability and efficacy, the RP2D of SDd is selinexor 100 mg, daratumumab 16 mg/kg and dex 40 mg, administered QW. Conclusions - Selinexor 100 mg QW can be combined safely with dara (per approved dosing) and dex. The preliminary ORR of 74% with SDd in patients with PI/IMiD refractory MM who are dara naïve is promising and compares favorably to 21% ORR of Dara and Sd in quad refractory myeloma. This once weekly regimen is well tolerated with no major organ toxicities to date. Data from the full phase 1 dose expansion will be presented. Disclosures Gasparetto: Takeda: Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria, Other: Travel; Janssen: Consultancy, Honoraria, Other: Travel; Celgene: Consultancy, Honoraria, Other: Travel, Research Funding. Schiller:Celator/Jazz Pharmaceuticals: Research Funding; Pharmacyclics: Research Funding. Bensinger:Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; amgen: Speakers Bureau; Takeda: Speakers Bureau. Bahlis:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria. White:Amgen, Celgene, Janssen, Takeda: Honoraria. Sebag:Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees; Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees. Venner:Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Amgen: Honoraria; Takeda: Honoraria. Leblanc:Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees. Chen:Amgen: Honoraria. Shah:Karyopharm Therapeutics: Employment. Jeha:Karyopharm Therapeutics: Employment. Saint-Martin:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Lipe:Celgene: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1993-1993
Author(s):  
Christine I Chen ◽  
Heather J. Sutherland ◽  
Rami Kotb ◽  
Michael Sebag ◽  
Darrell J. White ◽  
...  

Abstract Introduction - The nuclear export protein exportin 1 (XPO1) is overexpressed in a wide variety of cancers including multiple myeloma (MM). Selinexor is a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound that binds and inactivates XPO1. Selinexor forces nuclear retention and reactivation of cell cycle regulators such as p53, IkB, and Rb. Pomalidomide/dexamethasone (Pd) is approved in relapsed/refractory MM (RRMM)with an overall response rate (ORR) of 30% and progression-free survival (PFS) rate of <4 months in patients (pts) having received a prior proteasome inhibitor (PI) and IMiD. Strategies to improve the ORR and PFS are needed. In murine MM models, the combination of selinexor with IMiDs shows synergistic anti-MM activity and good tolerability. Methods- Pts with RRMM who received ≥ 2 prior therapies including lenalidomide (len) and a PI were enrolled. Selinexor was evaluated in 2 different dosing schedules of once-weekly (QW, 60 or 80 mg) or twice-weekly (BIW, 60 or 80 mg), with pomalidomide (pom)3 or 4 mg PO daily, and dexamethasone (dex) 20 mg BIW or 40 mg QW. The primary objectives were to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D), safety, and preliminary efficacy of the combination of selinexor, pomalidomide, and low dose dex (SPd) in pts with RRMM. Results- As of July 20th2018, 34 pts (16 male / 18 female) have been enrolled. The median age is 61 years and patients received a median of 4 (range, 2 - 9) prior treatment regimens. Thirty-two patients were IMiD refractory (21 len, 11 pom/len). Six dose limiting toxicities (DLTs) were observed: G3 fatigue (60 mg BIW, pom 4 mg), G3 febrile neutropenia (FN) (60 mg BIW, pom 3 mg), G3 FN and G4 neutropenia (80 mg QW, pom 4), G3 thrombocytopenia (80 mg QW, pom 3 mg) and 4 missed doses in Cycle 1 due to symptomatic hyponatremia (80 mg BIW, pom 4 mg). Enrollment on selinexor 80 mg QW, pom 3 mg is ongoing. Common SPd treatment related adverse events included (all grades, grades 3/4): neutropenia (62%, 56%), thrombocytopenia (59%, 32%), anemia (53%, 29%), anorexia (56%, 0%), fatigue (50%, 9%), nausea (47%, 0% ). Thirty pts were evaluable for response, which is outlined in Table 1. Median PFS is 10.3 months with a median follow up of 9.4 months. Conclusions- Enrollment is ongoing to evaluate once weekly selinexor in combination with Pd , (SPd). This all-oral SPd combination has clinical activity with an ORR 55% in pom-naive pts with heavily pretreated MM compared to previously published data of 30% ORR for Pd alone. Similarly, the PFS on SPd is 10.3 months vs. <4 months for Pd alone. No unexpected adverse events were noted. Phase 1 dose escalation of the combination of SPd is ongoing to define the optimal RP2D. Disclosures Chen: Amgen: Honoraria. Sebag:Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees. White:Amgen, Celgene, Janssen, Takeda: Honoraria. Bensinger:Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Speakers Bureau; celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; amgen: Speakers Bureau. Gasparetto:Bristol-Myers Squibb: Consultancy, Honoraria, Other: Travel; Janssen: Consultancy, Honoraria, Other: Travel; Takeda: Honoraria; Celgene: Consultancy, Honoraria, Other: Travel, Research Funding. Leblanc:Amgen Canada: Membership on an entity's Board of Directors or advisory committees; Janssen Inc.: Membership on an entity's Board of Directors or advisory committees; Celgene Canada: Membership on an entity's Board of Directors or advisory committees; Takeda Canada: Membership on an entity's Board of Directors or advisory committees. Venner:Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Amgen: Honoraria; Takeda: Honoraria. Schiller:Pharmacyclics: Research Funding; Celator/Jazz Pharmaceuticals: Research Funding. Lipe:Celgene: Consultancy. Shah:Karyopharm Therapeutics: Employment. Jeha:Karyopharm Therapeutics: Employment. Saint-Martin:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Bahlis:Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1829-1829 ◽  
Author(s):  
Christiane Querfeld ◽  
Theresa Pacheco ◽  
Francine M. Foss ◽  
Ahmad S. Halwani ◽  
Pierluigi Porcu ◽  
...  

Abstract Introduction and Objectives: microRNAs are small, non-coding RNAs that regulate expression of multiple genes which impact physiological processes and cellular phenotypes. miR-155-5p is a well-described onco-miR with a strong mechanistic link to cutaneous T-cell lymphoma (CTCL). A LNA-modified oligonucleotide inhibitor of miR-155-5p, MRG-106, was selected based on its ability to de-repress canonical miR-155-5p targets in multiple mycosis fungoides (MF) cell lines in vitro. In preclinical models, MRG-106 showed significant pharmacodynamic activity without requiring additional formulation. The objective of this first-in-human study is to evaluate the safety, tolerability, pharmacokinetics and preliminary efficacy of MRG-106 in patients with mycosis fungoides (MF). Methodology: This Phase 1 trial employs a dose-escalation design to evaluate both intratumoral and subcutaneous administration of MRG-106 at doses of 75 mg and up to 900 mg per injection, respectively. Patients were required to be ≥ 18 years old, have a confirmed diagnosis of MF, be clinical stage I-III with plaques or tumors, be on a stable treatment regimen or without any concomitant therapy for MF, and have no other major illness. The first 6 patients were dosed with four or five 75 mg intratumoral injections of MRG-106 over 2 weeks. In addition, 4 patients received saline injections in a second lesion on the same schedule. Skin biopsies were taken from MRG-106 and saline treated lesions for molecular, bioanalytical, and histological analyses, before the first dose and after the last dose. Results: Six patients (5M/1F, median age 61 years, 5 Caucasian/ 1 African-American) were dosed intratumorally. All tolerated the administrations well with only minimal erythema at the site of injection noted in one patient. One patient was discontinued from the trial due to rapid progression of disease, which was considered not related to the study drug. There were no clinically significant adverse events or laboratory abnormalities. To date, the first cohort of 6 patients has either completed the dosing period (5 patients) or discontinued due to progressive disease (1 patient). All patients showed a reduction in the baseline Composite Assessment of Index Lesion Severity (CAILS) score in both MRG-106-treated and saline-treated lesions. The maximal reduction was on average 55% [range: 33% to 77%] in the MRG-106 treated lesion and 39% [range:13% to 75%] in the saline treated lesions). In all the subjects that completed dosing, the MRG-106 treated lesions had a CAILS score reduction of ≥ 50% which was maintained to the end of study; in contrast, a ≥ 50% reduction was observed in only one saline treated lesion. Most patients noted a marked decrease in systemic pruritus. Histological examination of pre-treatment and post-treatment biopsies of the same lesion injected with MRG-106 from five evaluable patients revealed that one patient had a complete loss of the neoplastic infiltrate, two patients had a reduction in neoplastic cell infiltrate density and depth, one patient had fewer CD30+ large atypical cells, and one patient demonstrated no change. After the first dose, MRG-106 had a mean t1/2 in plasma of 4.4 hours, and a mean Cmaxof 1.4 µg/mL. The drug was detectable 24 hours after the last dose in the MRG-106-injected lesions that were biopsied. Gene expression analysis of the pre- and post-treatment biopsies showed transcript changes consistent with the expected mechanism of action of MRG-106. Conclusions: These promising preliminary results in this first-in-human study in 6 MF patients show that intratumoral injection of MRG-106 was well-tolerated, and demonstrated encouraging therapeutic improvements in cutaneous lesions, based on CAILS scores and histological findings. In addition, reductions in CAILS scores in other lesions as well as decreases in systemic symptoms such as pruritus were observed. Preliminary biomarker analysis indicates that MRG-106 induces transcriptional changes consistent with on-target activity and molecular proof of concept. The trial is ongoing and additional results will be presented as available. Disclosures Querfeld: Actelion: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Foss:Seattle Genetics: Consultancy, Speakers Bureau; Spectrum Pharmaceuticals: Consultancy; Eisai: Consultancy; Celgene: Consultancy, Research Funding, Speakers Bureau. Halwani:Bristol-Myers Squibb: Research Funding; Abbvie: Consultancy, Research Funding; Amgen: Research Funding; Seattle Genetics: Research Funding; Takeda: Research Funding; Pharmacyclics: Consultancy, Research Funding; Genentech: Research Funding; Kyowa Hakko Kirin: Research Funding; Immune Design: Research Funding. Porcu:miRagen: Other: Investigator in a clinical trial; celgene: Other: Investigator in a clinical trial; Innate Pharma: Other: Investigator in a clinical trial; Millenium: Other: investigator in a clinical trial. Seto:miRagen: Employment. Ruckman:miRagen Therapeutics, Inc: Employment. Landry:Accera, Inc: Consultancy; miRagen: Consultancy. Jackson:miRagen: Employment. Pestano:miRagen Therapeutics: Employment. Dickinson:miRagen Therapeutics: Employment. Sanseverino:miRagen Therapeutics: Employment. Rodman:Nivalis: Employment, Equity Ownership; miRagen Therapeutics: Consultancy. Gordon:GLPI: Consultancy, Equity Ownership; IGM: Consultancy; Globavir: Consultancy; Pre-cell: Consultancy; Industrial Laboratories: Membership on an entity's Board of Directors or advisory committees; Taiho: Consultancy; Flugen: Consultancy; Bayer: Consultancy; miRagen Therapeutics: Consultancy; Clinipace: Consultancy; Caring for Colorado Foundation: Membership on an entity's Board of Directors or advisory committees; Ruesch Center for the Cure of Gastrointestinal Cancer: Membership on an entity's Board of Directors or advisory committees; Axion: Membership on an entity's Board of Directors or advisory committees; TEQ laboratories: Membership on an entity's Board of Directors or advisory committees. Marshall:miRagen Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties: inventor on various patents; BiOptix: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Fluorofinder: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; AmideBio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Colorado BioScience Association: Membership on an entity's Board of Directors or advisory committees; Atlas Venture: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3330-3330 ◽  
Author(s):  
Christine Chen ◽  
Rami Kotb ◽  
Michael Sebag ◽  
Richard LeBlanc ◽  
Heather J. Sutherland ◽  
...  

Abstract Introduction - The nuclear export protein exportin 1, (XPO1) is overexpressed in a wide variety of cancers including multiple myeloma (MM). Selinexor is a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound that binds and inactivates XPO1. Selinexor forces nuclear retention and reactivation of tumor suppressor proteins (TSPs; NF-kB, p53 and FOXO) and reduction of many proto-oncogenes, including MDM2, MYC and Cyclin D. In murine MM models, the combination of selinexor with IMIDs shows synergistic anti-MM activity with good tolerability. Methods - This phase 1b/2 dose escalation study (NCT02343042) using the standard 3+3 design, is designed to determine the tolerability, maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and preliminary efficacy of selinexor in combination with pomalidomide and dexamethasone (SdP). Patients (pts) with relapsed/refractory MM who received ≥ 2 prior therapies including lenalidomide and a proteasome inhibitor (PI) were enrolled. Selinexor is dose escalated once-weekly (QW, starting at 80 mg) or twice-weekly (BIW, starting at 60 mg), pomalidomide 4 mg PO daily, days 1 -21 and dexamethasone (dex) 40 mg PO weekly in a 28 day cycle. Results - As of 25-Jul-2016, 11 pts (7 male / 4 female) have been enrolled. The median age is 58 years (range, 43 - 76), with a median of 5 (range, 2 - 9) prior treatment regimens. Eight pts had MM refractory to lenalidomide and 7 pts to bortezomib; including 5 pts with MM refractory to both. For the once-weekly selinexor cohort, the 80 mg dose level has been cleared and the 100 mg dose level is on going. For the twice-weekly cohort, the 60 mg dose level has been cleared and 80 mg dose level is on going. Common related grade 1/2 adverse events (AEs) include: nausea 7pts (64%), altered taste 5pts (45%), anorexia 3pts (27%), and diarrhea 3pts (27%). Grade 3/4 AEs include: neutropenia 8pts (73%), thrombocytopenia 4pts (36%), and leukopenia 3pts (27%). There was no febrile neutropenia or bleeding reported to date. No dose limiting toxicities have been observed and MTD has not been reached. Ten pts were evaluable for response including, 1 complete response (CR), 5 partial responses (PR), 3 minor responses (MR), and 1 stable disease (SD). The overall response rate (ORR) is 60% with a clinical benefit rate of 90% (ORR + MR). Responses are rapid in onset, with at least MR achieved by cycle 2 day 1. In lenalidomide and bortezomib refractory patients the ORR was 50%. One pt was deemed not evaluable due to non-compliance with study procedures. Eight pts are still on study, (range <1 - 7+ months) including 4 pts maintaining their response for > 3 months. Conclusions - The all oral combination of selinexor, pomalidomide and low dose dex (SdP) has significant clinical activity (ORR 60%) in pts with heavily pretreated MM. Responses are rapid in onset even with the lower dose cohorts tested thus far, CR can be achieved. No additive toxicities over monotherapy of either pomalidomide or selinexor have been observed. This novel treatment regimen therefore holds promise in addressing the urgent need to induce meaningful and durable responses in patients with IMiD and PI relapsed/refractory MM. Disclosures Chen: Janssen: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Takeda: Research Funding. Sebag:Celgene: Honoraria; Janssen: Honoraria; Novartis: Honoraria. Sutherland:Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Amgen: Consultancy, Honoraria. White:Celgene: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Venner:Takeda: Honoraria; Celgene: Honoraria, Research Funding; J+J: Research Funding; Janssen: Honoraria; Amgen: Honoraria. Kouroukis:Karyopharm: Research Funding; Amgen: Research Funding; Janssen: Research Funding. McCurdy:Celgene: Honoraria. Lalancette:BMS: Honoraria; Celgene: Honoraria. Bensinger:Sanofi: Consultancy, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Acetylon: Research Funding; Bayer: Research Funding; Takeda: Honoraria, Research Funding. Lentzsch:Celgene: Consultancy, Honoraria; BMS: Consultancy. Kauffman:Karyopharm Therapeutics Inc: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Jeha:Karyopharm: Employment. Picklesimer:Karyopharm: Employment. Saint-Martin:Karyopharm: Employment. Choe-Juliak:Karyopharm Therapeutics: Employment. Bahlis:BMS: Honoraria; Janssen: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: Travel Expenses, Research Funding, Speakers Bureau; Onyx: Consultancy, Honoraria; Amgen: Consultancy, Honoraria.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 814-814 ◽  
Author(s):  
Paul G. Richardson ◽  
Melissa Alsina ◽  
Donna M. Weber ◽  
Steven E. Coutre ◽  
Sagar Lonial ◽  
...  

Abstract Abstract 814FN2 Background: Patients with refractory multiple myeloma (MM) have limited treatment options and an extremely poor prognosis. A recent study of patients who were refractory to bortezomib and were relapsed following, refractory to or ineligible to receive an immunomodulatory drug (IMiD, thalidomide or lenalidomide) demonstrated a median event-free survival of only 5 months (Kumar S et al, Leukemia, 2011). Panobinostat is an oral pan-deacetylase inhibitor (pan-DACi) that increases acetylation of proteins involved in multiple oncogenic pathways. Preclinical studies have demonstrated synergistic anti-myeloma activity of the combination of panobinostat and bortezomib through dual inhibition of the aggresome and proteasome pathways. In a phase I study (B2207) of patients with relapsed or relapsed/refractory MM treated with panobinostat + bortezomib, clinical responses (≥ minimal response [MR]) were observed in 65% of patients, including in patients with bortezomib-refractory disease. PANORAMA 2 seeks to expand upon these preliminary results and seeks to determine whether panobinostat can sensitize resistant patients to a bortezomib-containing therapeutic regimen. Methods: PANORAMA 2 is a single arm, phase II study of panobinostat + bortezomib + dexamethasone in patients with bortezomib-refractory MM. Patients with relapsed and bortezomib-refractory MM (≥ 2 prior lines of therapy including an IMiD and who had progressed on or within 60 days of the last bortezomib-based therapy) are treated in 2 phases. Treatment phase 1 consists of 8 three-week cycles of oral panobinostat (20 mg days 1, 3, 5, 8, 10, 12) + intravenous bortezomib (1.3 mg/m2 days 1, 4, 8, 11) + oral dexamethasone (20 mg on day of and after bortezomib). Patients demonstrating clinical benefit (≥ stable disease) can proceed to treatment phase 2, consisting of 4 six-week cycles of panobinostat (20 mg TIW 2 weeks on 1 week off, and repeat) + bortezomib (1.3 mg/m2 days 1, 8, 22, 29) + dexamethasone (20 mg on day of and after bortezomib). The primary endpoint is overall response (≥ partial response [PR]), as defined by the European Group of Blood and Marrow Transplantation 1998 criteria, in the first 8 cycles of treatment phase 1. A Simon 2-stage design is used to test the primary endpoint where ≥ 4 responses (≥ PR) in 24 patients are needed in stage 1 in order to proceed to stage 2, where ≥ 9 responses in all patients (N = 47) are required to reject the null hypothesis (overall response rate ≤ 10%). Results: A sufficient number of responses ≥ PR were observed in stage 1 to allow for enrollment to continue to stage 2. As of 15 July 2011, 53 patients with bortezomib-refractory MM were enrolled. Safety and demographic data were available for 48 patients. The median age was 61 (41–88) years. Patients were heavily pretreated, with a median of 4 (2–14) prior regimens, and most patients (69%) received prior autologous stem cell transplant. Efficacy data were available for 44 patients. At the time of this analysis, 9 patients achieved ≥ PR (2 near CR [nCR] and 7 PR) as best overall response, and an additional 7 patients achieved an MR. Responders exhibited a long duration on therapy, and, to date, 8 patients have proceeded to treatment phase 2. The 2 patients with nCR have received ≥ 10 cycles of treatment (duration of therapy 190 and 253 days). Four patients who achieved PR have received ≥ 9 cycles (duration of therapy 155–225 days). Updated response data will be presented. Common adverse events (AEs) of any grade included, fatigue (52%), diarrhea (41%), thrombocytopenia (38%), nausea (38%), and anemia (21%). Gastrointestinal AEs were generally mild, with a relatively low incidence of grade 3/4 events. Grade 3/4 AEs were generally hematologic in nature, with grade 3/4 thrombocytopenia, anemia, and neutropenia reported in 38%, 12%, and 10% of patients, respectively. Other common nonhematologic grade 3/4 AEs included fatigue (10%) and pneumonia (10%). Of note, to date, a relatively low rate of peripheral neuropathy (17%) has been observed. No grade 3/4 peripheral neuropathy has been observed. Conclusions: The combination of panobinostat and bortezomib is a promising treatment for patients with bortezomib-refractory MM. These data, along with forthcoming data from the phase III study of panobinostat/placebo + bortezomib + dexamethasone in patients with relapsed MM (PANORAMA 1), will further define the potential role of panobinostat in the treatment of patients with MM. Disclosures: Richardson: Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Alsina:Novartis: Research Funding; Celgene: Research Funding; Ortho Biotech: Research Funding; Onyx: Research Funding; Millennium: Consultancy, Research Funding. Weber:Millennium: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Research Funding. Lonial:Millennium: Consultancy; Celgene: Consultancy; Merck: Consultancy; Onyx: Consultancy; BMS: Consultancy; Novartis: Consultancy. Gasparetto:Millennium: Speakers Bureau. Warsi:Novartis: Employment, Equity Ownership. Ondovik:Novartis: Employment, Equity Ownership. Mukhopadhyay:Novartis: Employment, Equity Ownership. Snodgrass:Novartis: Employment, Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 602-602 ◽  
Author(s):  
Jorge E. Cortes ◽  
Hagop M. Kantarjian ◽  
Neil Shah ◽  
Dale Bixby ◽  
Michael J. Mauro ◽  
...  

Abstract Abstract 602 Background: Ponatinib is a potent, oral, pan-BCR-ABL inhibitor active against the native enzyme and all tested resistant mutants, including the uniformly resistant T315I mutation. Initial findings of a phase 1 trial in patients (pts) with refractory hematologic malignancies have been reported. The effect of duration of treatment, prior treatment, and mutation status on response to treatment was examined in CML chronic phase (CP) pts who responded to ponatinib. Methods: An open-label, dose escalation, phase 1 trial of ponatinib in pts with hematologic malignancies is ongoing. The primary aim is to assess the safety; anti-leukemic activity is also being investigated. Pts resistant to prior treatments or who had no standard treatment available were enrolled to receive a single daily oral dose of ponatinib (2 mg to 60 mg). Subset analyses of factors impacting cytogenetic and molecular response endpoints (MCyR and MMR) were performed for pts with CP-CML. Data are presented through April 15, 2011. Results: In total, 81 pts (54% male) received ponatinib. Overall, 43 pts had CP with 34 ongoing at analysis. MCyR was observed as best response in 31/43 (72%), 27 (63%) CCyR. The median time to MCyR was 12 (3 to 104) wks. Response rates were assessed by duration of treatment (1 pt in CCyR at entry was excluded; 6 pts in PCyR had to achieve CCyR). At the 3 month assessment, 22/42 (52%) CP pts achieved MCyR; at 6 months, 24/42 (57%); at 12 months, 29/42 (69%) had MCyR. The impact of prior treatment on response and time to response was assessed. 42 pts (98%) had >2 prior TKIs and 28 (65%) ≥3 prior TKIs, including investigational agents. Of approved TKIs, all pts were previously treated with imatinib, 19 dasatinib or nilotinib after imatinib, and 21 both dasatinib and nilotinib after imatinib. MCyR rate decreased with number of prior TKIs (2 prior TKIs 13/14 [93%], ≥3 prior TKIs 17/28 [61%]) and number of approved TKIs (imatinib followed by dasatinib or nilotinib 17/19 [90%], or by both dasatinib and nilotinib 12/21 [57%]). Time to response was prolonged in pts more heavily treated with prior TKIs. Median time to MCyR increased with the number of prior TKIs and approved TKIs (2 TKIs 12 wks, ≥3 TKIs 32 wks). The effect of mutation status on response and time to response was also evaluated. At entry, 12 pts had the T315I mutation, 15 had other BCR-ABL kinase domain mutations, 12 had no mutations detected, 4 did not allow sequencing. MCyR response rate for CP pts with T315I was 11/12 (92%); for other mutations, 10/15 (67%); and no mutation, 7/12 (58%). Similarly, mutation status had an impact on time to response: median time to MCyR was 12 wks for those with T315I or other mutations and 32 wks in resistant pts with no mutation. All CP patients were evaluable for MMR. At analysis, MMR was 17/43 (40%). MMR rate was inversely related to number of prior TKIs (2 TKIs 10/14 [71%], ≥3 TKIs 6/28 [21%]), approved TKIs (imatinib followed by dasatinib or nilotinib 12/19 [63%], or by both dasatinib and nilotinib 4/21 [19%]), and was higher for T315I pts (7/12, 58%) and those with other mutations (7/15, 47%) compared with no mutation (2/12, 17%). Median time to MMR for CP pts was 97 wks; median time to MMR was shorter for pts who were less heavily treated (2 prior TKIs 24 wks) and those with T315I or other mutations (63 wks). Conclusion: In this subset analysis of the phase 1 data, ponatinib had substantial activity in all subgroups analyzed. Time on treatment, less prior therapy and kinase domain mutations were associated with higher response rates and early responses in CP pts. Cytogenetic responses improved over the first 12 months of treatment and were higher in less heavily treated pts. Disclosures: Cortes: Novartis: Consultancy, Research Funding; BMS: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Ariad: Consultancy, Research Funding. Kantarjian:Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; BMS: Consultancy, Research Funding; ARIAD: Research Funding. Shah:Ariad: Consultancy, Research Funding. Bixby:Novartis: Speakers Bureau; BMS: Speakers Bureau; GSK: Speakers Bureau. Mauro:ARIAD: Research Funding. Flinn:ARIAD: Research Funding. Hu:ARIAD: Employment. Clackson:ARIAD: Employment, Equity Ownership. Rivera:ARIAD: Employment, Equity Ownership. Turner:ARIAD: Employment, Equity Ownership. Haluska:ARIAD: Employment, Equity Ownership. Druker:MolecularMD: OHSU and Dr. Druker have a financial interest in MolecularMD. Technology used in this research has been licensed to MolecularMD. This potential conflict of interest has been reviewed and managed by the OHSU Conflict of Interest in Research Committee and t. Deininger:BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Genzyme: Research Funding. Talpaz:ARIAD: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4070-4070 ◽  
Author(s):  
Ravi Vij ◽  
Craig C. Hofmeister ◽  
Paul G. Richardson ◽  
Sundar Jagannath ◽  
David S. Siegel ◽  
...  

Abstract Abstract 4070 Background: There are currently limited effective treatment options for patients (pts) with RRMM with prior exposure to lenalidomide (LEN), bortezomib (BORT) and chemotherapy. In a multicenter, randomized phase 2 study, POM with or without LoDEX (n=221) was active in RRMM pts who had received ≥2 prior therapies, including LEN and BORT (Richardson PG, et al. Blood 2011;118:abs 634); activity was also observed in those with disease refractory to LEN, BORT, or both (Vij R, et al. J Clin Oncol 2012;30:abs 8016). Here we characterize outcomes in the POM+LoDEX group (n=113) according to the prior treatment exposure. Methods: Pts with RRMM who had received ≥2 prior therapies, including LEN and BORT, and had progressive disease (PD) within 60 days of their last treatment were randomized (1:1 ratio) to POM+LoDEX (POM, 4 mg/day for days 1–21 of a 28-day cycle; LoDex, 40 mg/week) or POM alone. At randomization, pts were stratified by age, prior number of treatments, and prior thalidomide exposure. At progression, pts receiving POM alone could receive POM+LoDEX at investigator's discretion. All pts received thromboprophylaxis (daily low-dose aspirin). The endpoints in this study were progression-free survival (PFS), response rates (using European Bone Marrow Transplantation [EBMT] criteria), duration of response, time to response, overall survival (OS), and safety. Response data according to prior therapy were assessed by investigator assessment. Results: All 113 pts assigned to POM+LoDEX had prior exposure to LEN (100%), BORT (100%), and steroids (100%). Most pts had also received prior alkylator therapy (93%), stem cell transplant (SCT) (73%), and thalidomide (THAL) (68%); 49% had received prior anthracyclines. Regimens immediately prior to study entry included BORT (50%), LEN (39%), cyclophosphamide (13%), THAL (8%), vorinostat (8%), carfilzomib (5%), and melphalan (5%). The median number of exposures to LEN and BORT in prior lines was once (range 1–4) and twice (range 1–6), respectively. The majority of pts (80%) had received >3 prior therapies. The overall response rate (ORR) was 48% and 30% in pts who had received ≤3 and >3 prior therapies, respectively. Of the pts who had ≤3 vs > 3 prior therapies, 9% vs 1% pts achieved complete response (CR), 39% vs 29% pts achieved partial response (PR), 9% vs 12% pts achieved minimal response (MR) and 44% vs 36 % pts achieved stable disease (SD), respectively. ORR was 34% and appeared similar regardless of prior exposure to alkylators (33%), anthracyclines (35%), SCT (35%), or THAL (35%). Median duration of response was also similar in pts who had received prior alkylators (8.4 mos), anthracyclines (10.1 mos), SCT (7.7 mos), and THAL (7.7 mos). Of the 69 pts who had a best response of SD or PD to their last prior antimyeloma therapy, 21 pts (12 SD and 9 PD) achieved a PR and 3 pts (1 SD and 2 PD) achieved a CR with POM+LoDEX treatment. Responding pts had longer time to progression (TTP; 11.1 mos) with POM+LoDex compared with the TTP (4.4 mos) observed with their last antimyeloma regimen prior to study. The most common grade 3–4 adverse events in the POM+LoDEX group were neutropenia (41%), anemia (22%), pneumonia (22%), thrombocytopenia (19%), and fatigue (14%). The incidence of at least 1 grade 3–4 adverse event was 100% in pts with ≤ 3 prior therapies, and 88% in pts with >3 therapies. Conclusions: The combination of POM+LoDEX has demonstrated an ORR of 34% in heavily pretreated pts with RRMM who have been previously exposed to LEN, BORT, steroids, and other treatments. Early treatment of POM+LoDEX (≤3 prior therapies) achieved better ORR (48%) compared with pts who received POM+LoDex later (>3 prior therapies; ORR, 30%). Disclosures: Vij: Onyx: Consultancy, Research Funding; Millennium Pharma: Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau. Off Label Use: Pomalidomide is an investigational drug and is not approved for the treatment of patients with any condition. Hofmeister:Celgene: Advisory Board Other, Honoraria. Richardson:Celgene, Millennium, Johnson & Johnson: Advisory Board Other. Jagannath:Onyx Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck Sharp & Dohme: Honoraria, Membership on an entity's Board of Directors or advisory committees; Millennium Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Siegel:Onyx: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau; Millennium Pharma: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau; Celgene: Advisory Board Other, Honoraria, Speakers Bureau; Merck: Advisory Board, Advisory Board Other, Honoraria, Speakers Bureau. Baz:Celgene, Millennium, Bristol Myers Squibb, Novartis: Research Funding. Chen:Celgene: Employment, Equity Ownership. Zaki:Celgene: Employment, Equity Ownership. Larkins:Celgene: Employment, Equity Ownership. Anderson:Acetylon, Oncopep: Scientific Founder, Scientific Founder Other; Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4679-4679 ◽  
Author(s):  
Jeff P. Sharman ◽  
Charles M. Farber ◽  
Daruka Mahadevan ◽  
Marshall T. Schreeder ◽  
Heather D. Brooks ◽  
...  

Abstract Introduction: Ublituximab (UTX) is a novel, chimeric monoclonal antibody (mAb) which targets a unique epitope on the CD20 antigen and has been glycoengineered to enhance affinity for all variants of FcγRIIIa receptors, demonstrating greater antibody-dependent cellular cytotoxicity (ADCC) activity than rituximab and ofatumumab, particularly against cells that express low CD20 levels. Two Phase I trials of single agent UTX in relapsed/refractory CLL reported significant response rates with rapid and sustained lymphocyte depletion and a manageable safety profile. Ibrutinib, a novel oral BTK inhibitor approved for patients with previously treated CLL and MCL, displays high single agent activity and has reported increased activity in combination with non-glycoengineered anti-CD20 mAbs. Herein we report safety and efficacy data on the first combination of ibrutinib with a glycoengineered anti-CD20 mAb, UTX, from an ongoing Phase 2 trial. Methods: Eligible patients have relapsed or refractory CLL/SLL or MCL with an ECOG PS ≤ 2. The study was designed to assess safety, tolerability, and early overall response rate, with an initial safety run-in period consisting of 6 patients followed by open enrollment. UTX (Cohorts of 600 and 900 mg for CLL and at 900 mg for MCL patients) is administered on Days 1, 8, and 15 in Cycle 1 followed by Day 1 of Cycles 2 - 6. Ibrutinib is started on Day 1 and continues daily at 420 mg and 560 mg for CLL and MCL patients respectively. Following Cycle 6, patients come off study but remain on ibrutinib. Primary endpoint for safety: Adverse Events and Dose Limiting Toxicities (DLT) during safety run-in. Phase II primary efficacy endpoint: ORR with an emphasis on early activity with response assessments by CT scan scheduled prior to cycles 3 and 6 only. Results: 40 patients (33 CLL/ 7 MCL) have been enrolled to date with enrollment continuing. 23 M/17 F, median age 72 yr (range 52-86), ECOG 0/1/2: 20/19/1, median prior Tx = 2 (range 1-6), 38% with ≥ 2 prior anti-CD20 therapies; prior purine analog = 43%; prior alkylating agent = 68%; and prior purine and alkylating agent = 43%. No DLTs were observed during the safety run-in. Gr 3/4 AE’s occurring in at least 5% of patients and at least possibly related to UTX and/or ibrutinib included: neutropenia, thrombocytopenia, diarrhea, rash, leukocytosis, and infusion related reaction. There were no Grade 3/4 adverse events reported in ≥ 10% of patients. Ibrutinib was dose reduced due to an AE in 2 patients (1 diarrhea, 1 rash) and discontinued in 2 patients due to ibrutinib related AE’s (diarrhea and rash). IRR’s were managed with infusion interruptions with no patient requiring an ublituximab dose reduction. As of July 2014, 24/40 patients are evaluable for response. Best response to treatment is as follows: TableTypePts (n)CR (n)PR (n)SD (n)ORR (%)CLL non 17p/11q10-9190%17p/11q817-100%Total CLL18116194%MCL632183% The one CLL patient who achieved stable disease had a 46% nodal reduction. UTX appears to control ibrutinib related lymphocytosis with more than half of the patients within normal range for ALC by first efficacy assessment. Conclusions: Data suggests ublituximab, a glycoengineered anti-CD20 mAb, in combination with ibrutinib is both well-tolerated and highly active in patients with relapsed or refractory CLL and MCL. ORR was 94% in patients with CLL (100% in patients with high risk CLL: 17p, 11q del with 1 CR), with responses attained rapidly (median TTR: 8 weeks). In MCL, 83% of patients achieved a response at first efficacy assessment, with 50% of patients achieving a CR by week 20. For most patients, responses improved by the second efficacy assessment. The addition of ublituximab appears to mitigate ibrutinib related lymphocytosis producing earlier clinical responses than historically seen with ibrutinib monotherapy. Efficacy and safety will be updated on all enrolled patients. Disclosures Sharman: TG Therapeutics: Research Funding; Gilead: Consultancy, Research Funding; Roche: Research Funding; Pharmacyclics: Research Funding; Celgene: Consultancy, Research Funding. Farber:Leukemia Lymphoma Society NJ Chapter: Membership on an entity's Board of Directors or advisory committees; Genentech: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Alexion: Stock ownership Other. Schreeder:TG Therapeutics, Inc.: Research Funding. Kolibaba:TG Therapeutics: Research Funding; Gilead: Research Funding; Glaxo Smithkline: Research Funding. Sportelli:TG Therapeutics: Employment, Equity Ownership. Miskin:TG Therapeutics, Inc.: Employment, Equity Ownership. Weiss:TG Therapeutics, Inc.: Employment, Equity Ownership. Greenwald:TG Therapeutics: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document