Risk Stratification for the Development of Venous Thromboembolism in Hospitalized Patients with Cancer

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4728-4728 ◽  
Author(s):  
Arabesque Parker ◽  
Erica A. Peterson ◽  
Agnes Y. Y. Lee ◽  
Carine de Wit ◽  
Marc Carrier ◽  
...  

Abstract Introduction: No method of venous thromboembolism (VTE) risk stratification exists for hospitalized cancer patients. The Khorana score is a validated tool in outpatients with cancer. The objective of this study was to assess the Khorana score for predicting development of VTE in cancer patients during admission to hospital. Methods: We conducted a retrospective analysis of data collected from healthcare records of consecutive, medically-ill cancer patients hospitalized between January and June 2010 in 3 academic medical centers in Canada. Objectively diagnosed symptomatic VTE during hospitalization, anticoagulant thromboprophylaxis (TP), and Khorana score variables were collected for every patient. Patients receiving therapeutic anticoagulation at admission, and those with incomplete data were excluded. The risk of VTE based on Khorana score category was evaluated using logistic regression. Continuous data were compared using a Student's t-test and expressed using the means and standard deviations. Categorical data were compared using the Pearson Chi-square test and were expressed as percentages. Statistical significance was defined as alpha less than 0.05. Results: 1398 patients were included. Mean age was 61.6 years, 51.2% were male, and mean BMI was 25.9 kg/m2. The most frequent tumor types were non-small cell lung carcinoma (12.7%) followed by lymphoma (10.9%). The median length of stay was 6 days (range 0-114 days). The most frequent reasons for hospitalization were chemotherapy (22.3%) followed by pain and palliation (21.4%). 34.5% received anticoagulant TP (n = 483/1398). The incidence of VTE was 2.9% (41/1398) overall, 5.4% (9/166) in high, 3.2% (26/817) in moderate, and 1.4% (6/415) in low Khorana score risk groups. High risk patients were significantly more likely than low risk patients to have VTE (p=0.016; OR 3.9, 95% CI 1.4-11.2). There was no difference in VTE incidence between patients who received anticoagulant TP and those who did not (3.5% vs 2.6%, p = 0.345). Patients with high risk Khorana score were more likely to receive anticoagulant TP than those with low risk Khorana score (46.4% vs. 23.9%, p <0.001, OR 2.8, 95% CI 1.9-4.0). Total incidence of major bleeding was 1.8% (25/1398). There was no difference in major bleeding between patients who received anticoagulant TP and those who did not (1.7% vs. 1.9%, p = 0.787). Conclusion: The Khorana score is predictive of VTE development in cancer patients who are hospitalized for medical illness and may be a useful tool for tailoring inpatient anticoagulant prophylaxis. Disclosures Lee: LEO: Consultancy, Honoraria; Bayer: Consultancy, Honoraria; Bristol Myers-Squibb: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria. Carrier:BMS: Research Funding; Leo Pharma: Research Funding. Wu:Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Leo Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 427-427 ◽  
Author(s):  
Alok A. Khorana ◽  
Charles W. Francis ◽  
Nicole Kuderer ◽  
Marc Carrier ◽  
Thomas L. Ortel ◽  
...  

Abstract Background: Ambulatory cancer patients at high-risk for venous thromboembolism (VTE) can be identified using a validated risk score. We evaluated the benefit of outpatient thromboprophylaxis with dalteparin in such high-risk patients in a multicenter randomized controlled trial. Methods: Cancer patients at high risk for VTE (Khorana score ≥3) and initiating a new systemic chemotherapy regimen were screened for VTE and, if negative, randomized to either dalteparin 5000 units daily subcutaneously or no prophylactic anticoagulation for 12 weeks. Subjects in both arms were screened with lower extremity ultrasounds every 4 weeks on study. Primary efficacy endpoint was any VTE over 12 weeks and primary safety endpoint was clinically relevant bleeding events over 13 weeks. The study was terminated due to poor accrual. Results: Of 117 enrolled patients, 19 were not randomized due to the presence of VTE on initial screening (N=10, 8.5%) or for other reasons (N=9). The mean age was 59 years with 46% female and 54% male, similar in both arms. The most common primary sites of cancer were pancreas, gastro-esophageal junction, lung and lymphoma. Over three-fourths of patients in each arm had an ECOG performance status of 0 or 1.Of 98 patients randomized, VTE occurred in 12% (N=6/50) of patients on the dalteparin arm and 21% (N=10/48) on the control arm (hazard ratio, HR 0.69, 95% CI 0.23-1.89) (absolute risk reduction 9%, relative risk reduction 42%, number needed to treat = 12). Major bleeding was similar (N=1) in each arm but clinically relevant bleeding was higher in the dalteparin arm (N=7 versus 1 in the control arm) (HR = 7.0, 95% CI 1.2-131.6). There was no difference in overall survival. Conclusions: Thromboprophylaxis is associated with a non-significant reduced risk of VTE with no effect on major bleeding or survival but increased risk of clinically relevant bleeding in this underpowered study population. The Khorana score successfully identifies patients with high incidence of VTE both at baseline and during study. The high incidence of baseline VTE suggests that consideration should be given to screening high-risk patients in clinical practice prior to starting systemic therapy. Future studies should continue to focus on risk-adapted approaches to reduce the burden of VTE in cancer. (Funded by NIH/NHLBI R01HL095109; clinicaltrials.gov identifier: NCT00876915). Table 1. Baseline Characteristics of Patients Enrolled in the PHACS trial Dalteparin Observation Total Enrolled (n) Baseline VTE, n (%) DVT PE Other reasons for not randomizing Randomized (n) Age, mean (SD), y --- --- --- --- --- 50 60 (10) --- --- --- --- --- 48 58 (12) 117 10 (9%) 6* (5%) 4 (3%) 9 98 59 (11) Gender, n (%) Female 21 (42%) 24 (50%) 45 (46%) Male 29 (58%) 24 (50%) 53 (54%) Primary Tumor Site, No. (%) Gynecologic 4 (8%) 4 (8%) 8 (8%) Colorectal 1 (2%) 3 (6%) 4 (4%) GE junction 8 (16%) 4 (8%) 12 (25%) Lung 6 (12%) 7(15%) 13 (27%) Genitourinary 2 (4%) 0 (0%) 2 (2%) Lymphoma 5 (10%) 2 (4%) 7 (15%) Breast 1 (2%) 1 (2%) 2 (2%) Pancreatic 19 (38%) 17 (35%) 36 (37%) Gastric 4 (8%) 6 (13%) 10 (10%) Other 0 (0%) 4 (8%) 4 (4%) Previous history of VTE, n (%) 4 (8%) 2 (4%) 6 (6%) *NOTE: 1 subject had both DVT and PE at baseline screening Abbreviations: DVT, deep vein thrombosis; PE pulmonary embolism; VTE, venous thromboembolism; ECOG: Eastern Cooperative Oncology Group Figure 1. Cumulative Incidence Curves for the Primary Efficacy Outcome in the Intention-to-Treat Population, According to Study Arm. Figure 1. Cumulative Incidence Curves for the Primary Efficacy Outcome in the Intention-to-Treat Population, According to Study Arm. Disclosures Khorana: Leo Pharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Boehringer-Ingelheim: Consultancy, Honoraria; Daiichi Sankyo: Consultancy, Honoraria; sanofi: Consultancy, Honoraria. Off Label Use: Randomized trial of dalteparin as prophylaxis. The drug is approved for treatment of cancer-associated thrombosis but not for prophylaxis.. Francis:Eisai: Consultancy, Research Funding; Portola: Consultancy, Honoraria; NHLBI: Consultancy; Lilly: Consultancy. Kuderer:Hospira: Consultancy; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Daiichi Sankyo: Consultancy. Carrier:Leo Pharma: Consultancy, Research Funding; BMS: Research Funding; Bayer: Consultancy, Honoraria; Pfizer: Consultancy. Ortel:Instrumentation Laboratory: Consultancy; Instrumentation Laboratory: Research Funding; Eisai: Research Funding; Daiichi Sankyo: Consultancy. Wun:Janssen: Consultancy. Iyer:Ipsen Pharmaceuticals: Consultancy; Genentec: Research Funding; Bristol Myers Squibb: Honoraria. Lyman:Amgen: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2872-2872 ◽  
Author(s):  
Farheen Mir ◽  
Andrew Grigg ◽  
Michael Herold ◽  
Wolfgang Hiddemann ◽  
Robert Marcus ◽  
...  

Abstract Introduction: Progression of disease within 24 months of initial therapy (POD24) is associated with poor survival in patients with follicular lymphoma (FL). Existing prognostic models, such as FLIPI-1 and FLIPI-2, show poor sensitivity for POD24, and are derived from cohorts lacking bendamustine-treated patients. More accurate predictive models based on current standard therapies are needed to identify patients with high-risk disease. The Phase III GALLIUM trial (NCT01332968) compared the safety and efficacy of standard chemotherapy regimens plus rituximab (R) or obinutuzumab (G) in patients with previously untreated FL. Using GALLIUM data, we developed a novel risk stratification model to predict both PFS and POD24 in FL patients after first-line immunochemotherapy. Methods: Enrolled patients were aged ≥18 years with previously untreated FL (grades 1-3a), Stage III/IV disease (or Stage II with bulk), and ECOG PS ≤2, and required treatment by GELF criteria. Patients were randomized to receive either G- or R-based immunochemotherapy, followed by maintenance with the same antibody in responders. The chemotherapy arm (CHOP, CVP, or bendamustine) was selected by each study center. POD24 was defined as progressive disease or death due to disease within 24 months of randomization (noPOD24 = no progression or lymphoma-related death in that period). The most strongly prognostic variables, based on PFS hazard ratios, were estimated using penalized multivariate Cox regression methodology via an Elastic Net model. Selected variables were given equal weights, and a clinical score was formed by summating the number of risk factors for each patient. Low- and high-risk categories were determined using a cut-off that provided the best balance between true- and false-positives for PFS. PFS correlation and sensitivity to predict POD24 were assessed. The data used are from an updated GALLIUM efficacy analysis (data cut-off: April 2018; median follow-up: 57 months). Results: 1202 FL patients were enrolled. Based on data availability and biological plausibility (i.e. could reasonably be linked with high-risk disease), 25 potential clinical and treatment-related prognostic variables were entered into the Elastic Net model (Table). A model containing 11 factors was retained by the methodology and chosen as the best model (Table). Patients were categorized as 'low risk' if they scored between 0 and 3 (n=521/1000 patients with complete data) and as 'high risk' if they scored between 4 and 11 (n=479/1000 patients). At 2 years, the PFS rate was 84.5% in the whole FL population. Using our model, 2-year PFS for high-risk patients was 77% compared with 79.9% for FLIPI-1 and FLIPI-2. In low-risk patients, 2-year PFS was 92% compared with 87.9% for FLIPI-1 and 87.6% for FLIPI-2 (low-intermediate-risk patients). Our model increased the inter-group difference in 2-year PFS rate from 8% (FLIPI-1) and 7.7% (FLIPI-2) to 15%. At 3 years, the inter-group difference increased from 6.9% (FLIPI-1) and 9% (FLIPI-2) to 17% (Figure). Sensitivity for a high-risk score to predict POD24 was 73% using our model compared with 55% for FLIPI-1 and 52% for FLIPI-2 (based on 127 POD24 and 873 noPOD24 patients with complete data). Excluding patients who received CVP, which is now rarely used, resulted in an inter-group difference in PFS of 15% at 2 years and 16.8% at 3 years. A sensitivity analysis showed that inclusion of the 9 clinical factors only (i.e. removal of CVP and R treatment as variables) formed a more basic scoring system (low-risk patients, 1-3; high-risk patients, 4-9); the inter-group difference in PFS was 16.5% at 2 years and 17.6% at 3 years. However, sensitivity for POD24 decreased to 56%. Conclusion: Our clinical prognostic model was more accurate at discriminating patients likely to have poor PFS than either FLIPI-1 or FLIPI-2, and its prognostic value was sustained over time. Our model also identified the FL population at risk of POD24 with greater sensitivity. Variables such as age and bone marrow involvement were not retained by our model, and thus may not have a major impact in the current era of therapy. Factors such as sum of the products of lesion diameters were included, as this captures tumor burden more accurately than presence of bulk disease. Future studies will aim to improve the accuracy of the model by considering gene expression-based prognostic markers and DNA sequencing to form a combined clinico-genomic model. Disclosures Mir: F. Hoffmann-La Roche: Employment. Hiddemann:F. Hoffman-La Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Consultancy, Research Funding. Marcus:F. Hoffman-La Roche: Other: Travel support and lecture fees; Roche: Consultancy, Other: Travel support and lecture fees ; Gilead: Consultancy. Seymour:Genentech Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Honoraria, Research Funding; Celgene: Consultancy; AbbVie: Consultancy, Honoraria, Research Funding; F. Hoffmann-La Roche Ltd: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Bolen:Roche: Other: Ownership interests PLC*. Knapp:Roche: Employment. Launonen:Launonen: Other: Ownership interests none PLC; Travel, accommodation, expenses; Novartis: Consultancy, Equity Ownership, Other: Ownership interests none PLC; Travel. accommodation, expenses; Roche: Employment, Other: Travel, accommodation, expenses. Mattiello:Roche: Employment. Nielsen:F. Hoffmann-La Roche Ltd: Employment, Other: Ownership interests PLC. Oestergaard:Roche: Employment, Other: Ownership interests PLC. Wenger:F. Hoffmann-La Roche Ltd: Employment, Equity Ownership, Other: Ownership interests PLC. Casulo:Gilead: Honoraria; Celgene: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5485-5485
Author(s):  
Massimo Gentile ◽  
Gianluigi Reda ◽  
Francesca Romana Mauro ◽  
Paolo Sportoletti ◽  
Luca Laurenti ◽  
...  

The CLL-IPI score, which combines genetic, biochemical, and clinical parameters, represents a simple worldwide model able to refine risk stratification for CLL patients. This score, developed in the era of chemo-immunotherapy, has not been gauged extensively in R/R-CLL patients treated with novel targeted agents, such as BCR and BCL2 inhibitors. Soumerai et al (Lancet Hematol 2019) assembled a novel risk model for OS in the setting of R/R-CLL receiving targeted therapies in clinical trials. This model, consisting of four accessible markers (β2M, LDH, Hb, and time from initiation of last therapy; BALL score), is able to cluster 3 groups of CLL patients with significantly different OS. This multicenter, observational retrospective study aimed to validate the proposed Soumerai (BALL) and/or CLL-IPI scores for R/R-CLL real-world patients treated with idelalisib and rituximab (IDELA-R). The primary objectives were to determine whether: i) the CLL-IPI retains its prognostic power also in R/R patients treated with IDELA-R; ii) the BALL score is of prognostic value for IDELA-treated R/R-CLL patients, and iii) the BALL score is predictive of PFS. This study, sponsored by Gilead (ISR#IN-IT-312-5339), included CLL patients collected from 12 Italian centers, who received IDELA-R (idelalisib 150 mg b.i.d. and a total of 8 rituximab infusions intravenously) outside clinical trials as salvage therapy with available data for the calculation of the CLL-IPI and BALL scores at the time of treatment start. OS was estimated for all subgroups of both scores. Additionally, risk-specific PFS was assessed. Kaplan-Meier curve, log-rank test, and Cox regression analyses were performed. The prognostic accuracy of the predictive model was assessed by Harrell's C-index. Overall, 120 CLL patients were included in this analysis. The majority of patients were Binet stage B and C (94.2%). The median age was 75 years and 83 cases (69.2%) were male. The median number of previous therapies was 3 (range 1-9) Baseline patient features are listed in Table 1. After a median follow-up of 1.6 years (1 month to 5.8 years), 33 patients had died and 39 experienced an event (death or progression). CLL-IPI scoring (115/120 evaluable cases) indicated that 6 patients (5.2%) were classified as low-risk, 24 (20.9%) as intermediate-risk, 58 (50.4%) as high-risk, and 27 (23.5%) as very high-risk. Stratification of patients according to the CLL-IPI score did not allow prediction of significant differences in OS. Thus, low-risk patients had a 2-year OS probability of 75% (HR=1), with an intermediate-risk of 68% (HR=2.9, 95%CI 0.37-23.3, P=0.3), high-risk of 83% (HR=1.58, 95%CI 0.2-12.5, P=0.66), and very high-risk of 63% (HR=5.9, 95%CI 0.78-45.2, P=0.86). Next, we tested a modified CLL-IPI by assigning a more balanced score to the original CLL-IPI variables (Soumerai et al, Leukemia Lymphoma 2019), partially overlapping previous results. Specifically, modified CLL-IPI high-risk group showed a significantly different OS as compared with intermediate- and low-risk groups. However, differently from the original report no difference was observed between low- and intermediate-risk). According to the BALL score (120/120 evaluable cases), 33 patients (27.5%) were classified as low-risk, 68 (56.7%) as intermediate-risk, and 19 (15.8%) as high-risk. Stratification of patients according to the BALL score predicted significant differences in terms of OS. Thus, low-risk patients had a 2-year OS probability of 92% (HR=1), intermediate-risk of 76% (HR=5.47, 95%CI 1.3-23.7, P=0.023), and high-risk of 54% (HR=15.1, 95%CI 3.4-67, P<0.0001) (Figure 1). Harrell's C-statistic was 0.68 (P<0.001) for predicting OS. To note, BALL score failed to significantly stratify patients in terms of PFS. As for Soumerai et al (Leukemia Lymphoma 2019), the original CLL-IPI score did not retain discriminative power in term of OS in R/R-CLL patients receiving IDELA-R. The modified CLL-IPI failed to stratify low- and intermediate-risk groups, likely due to the number of cases analysed in the current cohort and the heterogeneous IDELA-containing regimens included in the Soumerai study (Soumerai et al, Leukemia Lymphoma 2019). The CLL-IPI was designed for CLL patients treated with first-line chemo-immunotherapy. Herein, we confirm the prognostic power of the BALL score in this real-world series for OS, while losing the predictive impact of patient outcomes in terms of PFS. Disclosures Mauro: Gilead: Consultancy, Research Funding; Jannsen: Consultancy, Research Funding; Shire: Consultancy, Research Funding; Abbvie: Consultancy, Research Funding; Roche: Consultancy, Research Funding. Coscia:Abbvie: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Karyopharm Therapeutics: Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding. Varettoni:ABBVIE: Other: travel expenses; Roche: Consultancy; Janssen: Consultancy; Gilead: Other: travel expenses. Rossi:Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Honoraria, Other: Scientific advisory board; Janseen: Honoraria, Other: Scientific advisory board; Roche: Honoraria, Other: Scientific advisory board; Astra Zeneca: Honoraria, Other: Scientific advisory board. Gaidano:AbbVie: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sunesys: Consultancy, Honoraria; Astra-Zeneca: Consultancy, Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3092-3092 ◽  
Author(s):  
Rowan Kuiper ◽  
Martin van Vliet ◽  
Annemiek Broyl ◽  
Yvonne de Knegt ◽  
Bronno van der Holt ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is a heterogeneous disease with highly variable survival. Gene expression profiling (GEP) classifiers, such as the EMC-92, can consistently distinguish high risk patients from standard risk patients. Other prognostic factors for MM include the international staging system (ISS) and FISH. Here we present a comparison of prognostic factors and introduce a novel stratification based on EMC-92 and ISS. Methods Scores were calculated for the GEP classifiers EMC-92, UAMS-70, UAMS-17, UAMS-80 and MRC-IX-6 for the following five studies: HOVON-65/GMMG-HD4 (n=328; GSE19784), MRC-IX (n=247; GSE15695), UAMS-TT2 (n=345; GSE2658), UAMS-TT3 (n=238; E-TABM-1138 and GSE2658) and APEX (n=264; GSE9782; for details, see Kuiper R, et al. Leukemia (2012) 26: 2406–2413). FISH data were available for the HOVON-65/GMMG-HD4 trial and the MRC-IX trial. ISS values were available for all datasets except UAMS-TT2. Univariate associations between markers and overall survival (OS) were investigated in a Cox regression analysis, using Bonferroni multiple testing correction. For pair wise analysis of markers, the significance in the increase of partial likelihood was calculated. In order to find the strongest combination (defined as the highest partial likelihood) of GEP-ISS, we compared these pair-wise on the same data. Training sets of classifiers were excluded for those analyses in which that specific classifier was tested. All survival models have been stratified for study. The calculations were done in R using the package survival. Results Prognostic value of FISH, GEP and serum markers was determined in relation to overall survival (Figure 1). GEP classifiers generally performed much better than FISH markers. Of 6 FISH markers with known adverse risk, del(17p), t(4;14), t(14;20) and del(13q) demonstrated a significant association only in one of two data sets with available FISH (HOVON-65/GMMG-HD4). GEP classifiers, on the other hand, are much more robust. Classifiers EMC-92, UAMS-70 and UAMS-80 significantly identify a high-risk population in all evaluated data sets, whereas the UAMS-17 and the MRC-IX-6 classifiers predict high-risk patients in three of four datasets. As expected, ISS staging demonstrated stable and significant hazard ratios in most studies (three out of four). Indeed, when evaluating a merged data set, both ISS and all evaluated GEP classifiers are strong prognostic factors independent of each other. Markers with additive value to each other include all combinations of GEP classifiers as well as the combination of GEP classifiers together with ISS. Tested in independent sets, the EMC-92 classifier combined with ISS is the best combination, as compared to other classifier-ISS combinations tested on the same independent data sets. The strongest risk stratification in 3 groups was achieved by splitting the EMC-92 standard risk patients into low risk, based on ISS stage I, and intermediate risk, based on ISS stage II and III. This stratification retains the original EMC-92 high-risk group, and is robust in all cohorts. The proportions of patients defined as low, intermediate and high risk for this combined EMC-92-ISS classifier are 31% / 47% / 22 % (HOVON-65/GMMG-HD4), 19% / 61% / 20 % (MRC-IX), 46% / 39% / 15 % (UAMS-TT3) and 32% / 55% / 13 % (APEX). Variability in low risk proportion is caused by the variable incidence of ISS stage I. Conclusions We conclude that GEP is the strongest predictor for survival in multiple myeloma and far more robust than FISH. Adding ISS to EMC-92 results in the strongest combination of any of the GEP classifier-ISS combinations. Stratification in low risk, intermediate and high risk may result in improved treatment and ultimately in longer survival of MM patients. This research was supported by the Center for Translational Molecular Medicine (BioCHIP project) Disclosures: van Vliet: Skyline Diagnostics: Employment. Mulligan:Millennium Pharmaceuticals: Employment. Morgan:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Millenium: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Johnson and Johnson: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees. Goldschmidt:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria. van Beers:Skyline Diagnostics: Employment. Sonneveld:Janssen-Cilag: Honoraria; Celgene: Honoraria; Onyx: Honoraria; Janssen-Cilag: Research Funding; Millenium: Research Funding; Onyx: Research Funding; Celgene: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 167-167 ◽  
Author(s):  
Guy Meyer ◽  
Celine Chapelle ◽  
Philippe Girard ◽  
Florian Scotté ◽  
Anne Lamblin ◽  
...  

Introduction Venous thromboembolism (VTE) is a difficult to treat condition in patients with cancer with a persisting risk of recurrent VTE during anticoagulant treatment with low-molecular weight heparin (LMWH). Recent data suggest that direct oral anticoagulants (DOACS) are associated with a lower risk of recurrence but a higher risk of bleeding in these patients. Predicting the risk of recurrent VTE with LMWH may help to select the best treatment option. We conducted a prospective multicenter observational cohort study in cancer patients with VTE treated with tinzaparin for 6 months in order to validate the Ottawa score (NCT03099031) and search for additional risk of recurrent VTE. The Ottawa score is composed of 5 variables, female sex (+1), lung cancer (+1), breast cancer (-1) cancer stage 1 (-2) and previous DVT (+1). A score ≤0 is associated with a low risk of recurrent VTE. Methods Adult cancer patients with recent diagnosis of documented symptomatic or incidental VTE (deep vein thrombosis (DVT) or pulmonary embolism (PE) treated with tinzaparin for 6 months were included in the study. The primary endpoint was the recurrence of symptomatic or asymptomatic VTE within the first 6 months of treatment with tinzaparin. Other endpoints were symptomatic recurrent VTE, major bleeding, heparin induced thrombocytopenia (HIT), all-cause mortality within 3 and 6 months. All events were adjudicated by a Central Adjudication Committee. Time-to-event outcomes were estimated by the Kalbfleisch and Prentice method to take into account the competing risk of death. Cumulative incidences were presented with corresponding 95% confidence interval (95% CI). To validate the Ottawa score, the area under the curve (AUC) and its 95% CI were calculated on receiver operating characteristic (ROC) curve analysis; the most discriminant cut-off was then determined by calculating the Youden index. Univariate and multivariate analyses were performed to identify additional predictive factors of recurrent VTE to those included in the Ottawa score using the Fine and Gray method and adjusted on factors included in the Ottawa score. Hazard ratio and their 95% CI were calculated. Results A total of 409 patients were included and analyzed on an intention-to-treat basis; the median age was 68 years and 51% of patients were males. 60.4% of patients had a PE (with or without DVT) .64% received chemotherapy at inclusion or in the month before inclusion. Lung (31.3%) and digestive track (18.3%) cancers were the most common cancer types and 67.0% had stage IV cancers. According to Ottawa score, 58% of patients were classified at high clinical probability of recurrence (score ≥ 1). During the 6 months treatment period, 23 patients had a recurrent VTE, yielding a cumulative incidence of 6.1% (95% CI 4.0-9.3) with a median time for recurrent VTE of 33 days. The recurrence rate of VTE was estimated to 7.8% (95% CI 4.9-12.5) for patients classified at high risk of recurrence according to the Ottawa score (score ≥ 1) compared to 3.8% (95%CI 1.6-8.9) for other patients (Ottawa score &lt; 1). AUC of the Ottawa score was 0.60 (95% CI 0.55-0.65). In multivariable analysis, none of the potential risk factors for recurrent VTE was significantly associated with recurrent VTE at 6 months. During the 6 months treatment period, 15 patients had a major bleeding and 2 patients experienced a HIT. At 3 and 6 months, 104 and 144 patients had died yielding a cumulative incidence of 26.1%, (95% CI 21.8-30.4) and 37.8% (95% CI 32.8-42.9), respectively. The main cause of death was underlying cancer. Conclusion In this prospective cohort of patients with cancer receiving LMWH for VTE, the Ottawa score did not accurately predict recurrent VTE. No other clinical predictor of recurrent VTE was identified in this study. Disclosures Meyer: Bayer: Other: travel support; LEO pharma: Other: travel support, Research Funding; SANOFI: Other: travel support, Research Funding; BMS-Pfizer: Other: travel support, Research Funding; Boehringer Ingelheim: Research Funding. Girard:Leo Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Other: travel support. Scotté:LEO Pharma A/S: Honoraria, Research Funding, Speakers Bureau; Pfizer: Honoraria, Research Funding, Speakers Bureau; Tesaro: Honoraria, Research Funding, Speakers Bureau; Amgen: Honoraria, Research Funding, Speakers Bureau; BMS: Honoraria, Research Funding, Speakers Bureau; Roche: Honoraria, Research Funding, Speakers Bureau; MSD: Honoraria, Research Funding, Speakers Bureau; Pierre Fabre Oncology: Honoraria, Research Funding, Speakers Bureau. Lamblin:Leo Pharma: Employment. Laporte:Bayer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Boston scientific: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Leo-Pharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Boehringer-Ingelheim: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; MSD: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 451-451 ◽  
Author(s):  
Marc Rodger ◽  
Michael J. Kovacs ◽  
Susan Kahn ◽  
Phil Wells ◽  
David Anderson ◽  
...  

Abstract Abstract 451 Introduction: To continue or discontinue OAC after 6 months of therapy for VTE is one of the most important unanswered questions in VTE management. In 2007, we developed a clinical decision rule to identify low risk patients with unprovoked VTE who could safely discontinue OAC after 5-7 months of therapy. This clinical decision rule was developed from a large prospective cohort study of patients with unprovoked VTE who discontinued anticoagulants after 5-7 months of OAC and were subsequently followed for a mean of 18 months for recurrent VTE. The “MEN continue and HERDOO2” rule states that men and high risk women should continue anticoagulants indefinitely after unprovoked VTE. High risk women are women with ≥2 of the following 1)Hyperpigmentation, Edema or Redness (HER) on exam in either leg, 2)Vidas D-Dimer >250, 3)Obesity- BMI >30 or 4)Older age over 65. Given that the OAC treatment decision is a long-term treatment decision that needs to be counter-balanced with long-term bleeding risk from OAC (1-3% annual risk of major hemorrhage) it is important to determine long-term risks of recurrent VTE in unprovoked VTE patients, high risk patients and low risk patients. Objective: We sought to confirm that the risk of recurrent VTE in high risk patients remains elevated and conversely that the risk remains low in low risk women over longer term follow-up. Methods: Multi-centre prospective cohort study of first unprovoked VTE patients who had potential predictors collected while on OAC (including D-Dimer) enrolled from 2001 to March 2006. Patients were excluded if they had: 1) recurrent unprovoked VTE, 2) known high risk thrombophilia or 3) no consent. Symptomatic suspected VTE during subsequent follow-up (up to july 2009) off of OAC was investigated with reference to baseline imaging and then independently adjudicated. Results: 646 participants were enrolled in 11 centers. At enrolment, mean age of 53 (range 17-95) and 49% were female. During a mean 3.1 years (range 0.01-6.5) of follow-up, 131/512 suspected VTE were adjudicated as recurrent VTE resulting in an annual risk of recurrent VTE of 6.7% (95% CI 5.5-7.6%) in patients with unprovoked VTE. Men had a 9.9% (95% CI 8.3-11.8%) annual risk of recurrent VTE. High risk women with 2 or more HERDOO points had an annual risk of recurrent VTE of 8.3% (95%CI 5.7-11.3%). Low risk women (1 or 0 HERDOO points) had 1.3% (95% CI 0.5-2.8%) annual risk of recurrent VTE compared to 9.5% (8.1-11.0%) annual risk of recurrent VTE in high risk patients (men and high risk women). Conclusions: Men and high risk women with unprovoked VTE should be considered for long-term OAC therapy given a high risk of recurrent VTE over 3 year follow-up . Women with a low HER DOO 2 score may be able to safely discontinue anticoagulants. Disclosures: Rodger: Bayer: Research Funding; Leo Pharma: Research Funding; Pfizer: Research Funding; Boehringer Ingelheim: Membership on an entity's Board of Directors or advisory committees; Biomerieux: Research Funding; GTC Therapeutics: Research Funding. Crowther:BI: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Bayer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Honoraria, Research Funding; Leo Pharma: Consultancy, Honoraria, Research Funding; Sanofi-Aventis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Artisan Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4323-4323
Author(s):  
Alba Redondo ◽  
Mercedes Sánchez Barba ◽  
Guillermo Sanz ◽  
Teresa Bernal ◽  
Montserrat Arnan Sangerman ◽  
...  

Abstract INTRODUCTION MDS are a heterogeneous group, and it is necessary an adequate prognostic stratification in order to the best management. The new revised international prognostic scoring system (IPSS-R) has improved prognostic ability for survival and AML evolution comparing with the previous prognostic indexes. But, it is not clear the prognosis of patients included in the intermediate group, 20% of MDS, patients with a median OS of 3 years according to Greenberg et al, are they in the high or in the low risk category? The aims of the present study were to describe characteristics of patients included in this intermediate group of the IPSS-R in the Spanish MDS cohort and to identify which factors could have an impact on survival. A new score prognostic system (GESMDi score) in order to a better stratification should be proposed in this subset of patients that will be useful for determine the best therapeutic approach for them. METHODS: All patients were included in the GESMD, diagnosed of Primary MSD and Intermediate IPSS-R. The Statistical analyzes were performed using SPSS version 21, Cox models and Kaplan-Meier curves were used to demonstrate clinical outcomes. Regarding the new score proposed, GESMDi score, modeling of prognostic risk was based on multivariate analysis of survival time. Cox model for survival was built to derive the relative weights within the score. RESULTS: Data from 957 patients of 69 centers of GESMD were evaluated. Their median age was 73.9 years (p25/p75 66-80), 61.6% males (N=590), and median follow-up 21,4 months (p25-p75 de 11-41). Regarding WHO 2001 classification: 31% were RAEB-1, 21% CMML, 18% RCMD, 14% RAEB-2, 3% RCMD-RS, 3.1% RARS, 2.5% RA, 2% 5q-syndrome, 2% AML, 1% unclassified. Median hemoglobin at diagnosis was 9.8 g/dL (p25/p75:8.3-11.6), median bone marrow (BM) blasts 6% (p25/p75:3-8) and median platelet count 99x109/L (p25/p75:66-180). According to IPSS, 5% of patients were classified as low risk, 78% as intermediate-1, 16% as intermediate-2 and 1% as high risk. Cytogenetic were very good in 2% of patients, good in 76%, intermediate in 17%, poor in 5% and in 1% very poor. IPSS-R score classified patients in 3 different groups, with a punctuation of≤ 3.5 (35.6%), >3.5 and ≤ 4 (35.8%) and> 4 and ≤ 4.5 (28.5%). Median OS was 30.1 months, the estimated 1-year and 2-y OS were 79.2% and 57.8%, respectively. In the univariate analysis for OS older age (>74y, p<0.001), lower Hb level (≤9.5 g/dL, p<0.001), WHO 2001 with excess of blasts classification (p=0.035), lower platelets level (≤30 x 109/L, p=0.01), PB blasts (yes, p=0.001), ferritine level (>500 ng/ml, p=0.002), and higher IPSS-R score (>3.5 and ≤ 4 and >4 and ≤ 4.5, p=0.023 and p=0.004, figure 1) had a deleterious impact on survival. In the multivariate analysis, only age, Hb level, PB blast, ferritine level and IPSS-R value retained statistical significant impact on OS (table 1a). In the multivariate analysis, Hazard ratio, a new score system (GESMDi score) was established for all patients. Patients with adverse features were added points in order to stratify the risk of death: age<74y and/or PB blasts (2 points) and Hb level ≤9.5 g/dL and/or ferritine level >500 ng/ml and/or IPSS-R of >3.5 (1 point), table 1a. The GESMDi score was performed in 685 patients with all data available and 7 groups of patients were defined with different median OS (p<0.0001, table 1b). Two final categories were established according to the definition of risk from the Spanish MDS group, low risk patients (estimated OS >30 months) and high risk patients (<30 months). Patients with scores between 0-3 (70.6% patients, me OS 41.1, 95CI 34.4-47.7) were in the low risk definition while patients with scores between 4-6 (29.3% patients, me OS 17.5 mo, 95CI 13.4-21.5) were classified as high risk patients (p< 0.0001, Figure 2). CONCLUSIONS: GESMDi score, a proposed prognostic score system from patients with intermediate IPSS-R, allow us to establish a better prognosis stratification in this heterogeneous MDS population. Treatment and management should be better established for those patients nowadays according to this novel stratification. Table 1 a) Univariate and multivariate analysis for OS among patients with Intermediate IPSS-R b) OS according to the GESMDi score proposed Table 1. a) Univariate and multivariate analysis for OS among patients with Intermediate IPSS-R b) OS according to the GESMDi score proposed Figure 1 OS according to IPSS-R value in the intermediate group (≤3.5, ≤4 and ≤4.5) Figure 1. OS according to IPSS-R value in the intermediate group (≤3.5, ≤4 and ≤4.5) Figure 2 OS according the GESMDi score proposed in the intermediate IPSS-R group: low and high risk patients (n=685) Figure 2. OS according the GESMDi score proposed in the intermediate IPSS-R group: low and high risk patients (n=685) Disclosures Del Cañizo: Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; janssen: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Díez Campelo:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; Janssen: Research Funding; celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 24-25
Author(s):  
Rowan Kuiper ◽  
Mark van Duin ◽  
Martin H Van Vliet ◽  
Erik H Van Beers ◽  
Berna Berna Beverloo ◽  
...  

Background Updating prognostic models for multiple myeloma is important in the context of changing treatment options. Previously we have described the value of the prognostic marker SKY92, which identifies high-risk multiple myeloma patients, as well as the value of the combined SKY92-ISS marker. With the introduction of revised ISS, it is of interest to evaluate the value of the updated combination of SKY92 with R-ISS. Within the HOVON87/NMSG18 trial, stratification into 3 groups was described: high-risk: 11% SKY92 high-risk (HR) + R-ISS II-III, low-risk: 15% SKY92 standard risk (SR) + R-ISS I and intermediate risk (74%, other). The 3-year PFS rates were 54% (95%CI: 38-77%), 27% (95%CI: 21-37%) and 7% (95%CI: 1-46%) for SKY-RISS I, II and III, respectively (p &lt; 0.001). The 3-yr OS rates for SKY-RISS I to III were 88%, 66% and 26% (p=6×10-7). Here we describe the validation of SKY92-RISS in the CoMMpass dataset. Methods SKY92 was determined using RNA-seq data available from the CoMMpass dataset. Briefly, the SKY92 score was obtained as a weighted summation of the expression given by the available Ensembl gene IDs, corresponding to the probe sets of the SKY92 classifier. Renormalization of the original SKY92 discovery data (HOVON65/GMMG-HD4) allowing a direct remodeling between the Affymetrix probe-set expressions (i.e. SKY92) and RNAseq Ensembl gene IDs. Only Ensembl gene IDs with an average log2 expression &gt;8 were used. Revised ISS status was determined as described. For optimal comparison to the discovery cohort of the HOVON87/NMSG18 trial, the analysis was limited to 93 patients older than 65 years in the CoMMpass data set, that did not receive transplant, and for whom RNA-Seq at diagnosis, R-ISS and follow-up data were available. Results The median follow-up is 41 months. SKY92 identified 24 high-risk patients (24/93: 26%). The 3-yr PFS and OS rates of standard-risk patients were 49% and 80% respectively, compared to 23% and 44% for high-risk, resulting in a significant log rank test (p &lt; 0.005). The R-ISS classified patients into the low-risk R-ISS I (24% of patients), intermediate-risk R-ISS II (63%) and high-risk R-ISS III (13%). The 3-yr PFS rates were 76% (RISS I), 33% (RISS II) and 33% (RISS III); for OS: 100% (RISS I), 68% (RISS II) and 33% (RISS III; PFS, p = 0.07; OS, p &lt; 0.001). SKY92 and R-ISS were independent prognostic factors in terms of OS and PFS. The SKY-RISS classification resulted in 20% low-, 61% intermediate- and 18% high-risk patients (Figure 1). The 3-yr PFS rates were 81% (95%CI: 64-100%), 42% (95%CI: 30-59%) and 12% (95%CI: 3-44%; p &lt; 0.001) and 3-yr OS rates were 100% (95%CI: 100-100%), 77% (95%CI: 66-89%) and 32% (95%CI: 16-61%; p &lt;0.001). Out of 69 patients classed as standard risk using the SKY92 classifier (80% 3-yr OS rate), 17 and 52 were classified as SKY-RISS I and II, respectively, resulting in a 3-yr survival rate of 100% and 74%, respectively. In contrast, out of 24 SKY92 HR patients (44% 3 yr OS rate), 5 were classified as SKY-RISS II (100% alive at 3 years) with the remainder true high-risk patients (32% alive at 3 years). Out of 12 RISS III patients (3-yr OS, 33%), 5 were classified as SKY-RISS II (3-yr OS: 60%) and 7 as SKY-RISS III (3-yr OS: 14%). Conclusion This study demonstrates the value of gene expression profiling - SKY92 - alongside revised ISS. They form a solid combination, improving on either marker separately. Both models combined clearly identified more high-risk patients correctly, whilst also placing low risk patients into a more appropriate risk category. This was shown in the discovery set and was subsequently applied to an independent set, confirming the validity and usability of the SKY-RISS. Disclosures Kuiper: SkylineDx: Current Employment, Current equity holder in private company. Van Vliet:SkylineDx: Current Employment, Current equity holder in private company. Van Beers:SkylineDx: Ended employment in the past 24 months. Zweegman:Celgene: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees; Sanofi: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Broijl:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Sonneveld:Sanofi: Consultancy; Bristol-Myers Squibb: Consultancy, Honoraria, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Skyline Dx: Honoraria, Research Funding; Karyopharm: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3762-3762
Author(s):  
Susanne Saussele ◽  
Michael Lauseker ◽  
Verena Hoffmann ◽  
Ulrike Proetel ◽  
Benjamin Hanfstein ◽  
...  

Abstract Abstract 3762 Introduction: The EUTOS Score was developed and validated as a prognostic tool for the achievement of complete cytogenetic response (CCR) at 18 months for chronic phase (CP) CML patients under imatinib therapy. The score identifies high-risk patients not reaching CCR at 18 months with a positive predictive value of 34% and a specificity of 92% using only two variables, peripheral blood basophils and spleen size at diagnosis (Hasford et al. Blood 2011). We sought to evaluate the clinical impact of the EUTOS score to predict molecular response. Therefore, we analyzed the EUTOS score with patients from the German CML-Study IV, a randomized 5-arm trial (imatinib 400 mg vs. imatinib 800 mg vs. imatinib in combination with interferon alpha vs. imatinib in combination with araC vs. imatinib after interferon failure). Results: From July 2002 to December 2010, 1,502 patients with BCR-ABL positive CML in CP were randomized. 129 patients with imatinib after interferon alpha and 36 other patients had to be excluded (14 due to incorrect randomization or withdrawal of consent, 22 with missing baseline information). 1,337 patients were evaluable for overall and progression-free survival (OS and PFS), 1,252 for molecular responses. 749 of these patients were part of the score development sample. Therefore cytogenetic analyses are not described here. By EURO score, 36% of patients (n=475) were low risk, 51% (n=681) intermediate risk, and 12% (n=167) high risk. The EUTOS score was low risk in 88% (n=1163) and high risk in 12% (n=160). The high-risk patients differed between the two scores: EUTOS high-risk patients were classified according to EURO score in 12% as low (n=19), in 45% as intermediate (n=68) and in 43% as high risk (n=73). Patients with high, intermediate, and low risk EURO score achieved MMR in 22, 16, and 13 months and CMR4 (BCR-ABL <=0.01%) in 59, 41, and 34 months. P-values for low vs. intermediate risk groups were borderline only (0.03 for MMR and 0.04 for CMR4), whereas p-values for high vs. low/intermediate risk groups were for both molecular response levels <0.001. At 12 months the proportion of patients in MMR was 38%, 46%, 54% for high, intermediate, and low risk patients, respectively. Similar results were observed with the Sokal score. Patients with high risk EUTOS score achieved deep molecular responses (MMR and CMR4) significantly later than patients with low risk EUTOS score (MMR: median 21.0 vs. 14.8 months, p<0.001, Fig. 1a; CMR4: median 60.6 vs. 37.2 months, p<0.001, Fig. 1b). The proportions of patients achieving MMR at 12 months were significantly lower in the EUTOS high-risk group than in the EUTOS low-risk group (30.8% vs. 50.6%, p<0.001). OS after 5 years was 85% for high and 91% for low risk patients (p=n.s.), PFS was 85% and 90%, respectively. Conclusions: The EUTOS score clearly separates CML patients also according to MMR and CMR4 (MR4). The new EUTOS score should be used in future trials with tyrosine kinase inhibitors in CML. Disclosures: Neubauer: Novartis: Honoraria, Research Funding; Roche: Research Funding. Kneba:Hoffmann La Roche: Honoraria. Schnittger:MLL Munich Leukemia Laboratory: Employment, Equity Ownership. Hochhaus:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2967-2967
Author(s):  
Mark van Duin ◽  
Rowan Kuiper ◽  
Martin van Vliet ◽  
Annemiek Broijl ◽  
Leonie de Best ◽  
...  

Abstract Improved prognostication is required for multiple myeloma (MM). So far, marker development has been based on clinical trials with a study population predominantly younger than 65 years. However, the median age of newly diagnosed MM patients is 66 years old. Based on gene expression profiles of the HOVON-65/GMMG-HD4 dataset, we previously developed the EMC92 prognostic signature, consisting of 92 probe sets for improved prognostication in MM. The EMC92 was validated in the MRC-IX, TT2, TT3 and APEX datasets. These studies were mostly aimed at younger patients with a median age of 57 years. The EMC92 signature was subsequently developed for clinical use as part of the MMprofiler, and termed the SKY92 signature. To assess the validity of the SKY92 signature in older MM patients, we used the HOVON-87/NMSG-18 study, in which induction therapy with melphalan, prednisone and thalidomide, followed by thalidomide maintenance, was compared with melphalan, prednisone and lenalidomide, followed by lenalidomide maintenance (MPT-T vs. MPR-R). The median age of all patients included in this trial was 73 years, with 34% of patients 76 years or older. The median follow up of the patients still alive was 39 months. Of 143 patients both gene expression profiling and clinical data were available (median age 73; 30% ≥76; n=83 MPT-T; n=60 MPR-R). The MMprofiler was used to obtain SKY92 scores, classifying a patient as high risk or standard risk (MMprofiler- CE IVD assay, performed according to the manufacturers' instructions for use at the SkylineDx reference lab, Rotterdam, The Netherlands). The association between survival and the SKY92 signature was evaluated using Cox regression analysis. Kaplan-Meier curves were constructed for visualization. Using the SKY92 signature 22/143 patients were identified as high risk (15.4%). The median overall survival (OS) for high risk patients was 21 months, compared to 53 months for standard risk patients (hazard ratio (HR): 2.9 (95% confidence interval (CI): 1.6-5.4; p=5.6 x 10-4)). The median progression free survival (PFS) in the high risk and standard risk groups were 12 months and 23 months, respectively (HR: 2.2 (95% CI: 1.4-3.7; p=1.2 x 10-3)). In this subset of 143 patients, deletion of 17p (del17p) and gain of 1q (gain1q) were also adversely associated with OS in a univariate analysis. Including SKY92, del(17p) and gain(1q) in a multivariate model demonstrated that SKY92 and del(17p) remained significantly associated with OS (subset of 143 (n=101) with all data known; Table 1). We previously developed the combination of ISS with SKY92: low risk (ISS I-SKY92 standard risk (SR)), intermediate-low (ISS II-SKY92 SR), intermediate-high (ISS III-SKY92 SR) and high risk (ISS I-III, SKY92 high risk; Kuiper et al., ASH 2014, #3358). The Cox model for this combined marker has a p-value for the likelihood ratio test of p=3 x 10-3 for OS (Figure 2) and p=0.016 for PFS. In conclusion, the SKY92 signature (MMprofiler) is a useful prognostic marker to identify a high-risk subgroup in the elderly population. Figure 1. Performance of the SKY92 signature in the HOVON-87/NMSG-18 study. Red line indicates high risk patients (n=22), blue line indicates standard risk patients (n=121). PFS (A); OS (B). Figure 1. Performance of the SKY92 signature in the HOVON-87/NMSG-18 study. Red line indicates high risk patients (n=22), blue line indicates standard risk patients (n=121). PFS (A); OS (B). Table 1. SKY92 in relation to FISH markers in the HOVON-87/NMSG-18 (Hazard ratios (HR), 95% confidence intervals (CI) and p-values (2-sided; p) for Cox proportional hazards analysis). The multivariate analysis (bottom) was performed using the markers significant in the univariate analysis (top). Bold: p<0.05, pos: positive, neg: negative and na: not available. Table 1. SKY92 in relation to FISH markers in the HOVON-87/NMSG-18 (Hazard ratios (HR), 95% confidence intervals (CI) and p-values (2-sided; p) for Cox proportional hazards analysis). The multivariate analysis (bottom) was performed using the markers significant in the univariate analysis (top). Bold: p<0.05, pos: positive, neg: negative and na: not available. Figure 2. Combining ISS with SKY92. Groups are defined in the text. Hazard ratios of the individual groups are given relative to the low risk group. Figure 2. Combining ISS with SKY92. Groups are defined in the text. Hazard ratios of the individual groups are given relative to the low risk group. Disclosures Kuiper: SkylineDx: Employment. van Vliet:SkylineDx: Employment. Broijl:Celgene: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. de Best:SkylineDx: Employment. van Beers:SkylineDx: Employment. Bosman:SkylineDx: Employment. Dumee:SkylineDx: Employment. van den Bosch:SkylineDx: Employment. Waage:Amgen: Research Funding; Celgene: Research Funding; Janssen: Research Funding. Zweegman:Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding. Sonneveld:Celgene: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Karyopharm: Research Funding; SkylineDx: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document