scholarly journals Efficacy and Safety of Nilotinib 300 Mg Twice Daily (BD) in Patients with CML in Chronic Phase (CML-CP) Who Are Intolerant to Prior BCR-ABL Tyrosine Kinase Inhibitors (TKIs): Results from the Randomized, Phase IIIb E.N.E.S.Tswift Study

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5447-5447
Author(s):  
Devendra K Hiwase ◽  
Peter Tan ◽  
James D'Rozario ◽  
John Taper ◽  
Anthony Richard Powell ◽  
...  

Abstract Background: Philadelphia chromosome-positive (Ph+) CML is a myeloproliferative disease characterized by the presence of the abnormal Ph+ in hematopoietic cells. Imatinib, dasatinib and nilotinib are BCR-ABL TKIs commonly used in the treatment of CML-CP. Many patients on BCR-ABL TKI therapy will experience adverse events (AEs). Some of the more common AEs associated with first- and second-generation BCR-ABL TKIs include fluid retention, diarrhea, rash, musculoskeletal pain, nausea, vomiting, muscle cramps, and headache. Some patients will be unable to tolerate these AEs and will discontinue therapy. The current study aimed to assess the efficacy and safety of nilotinib in patients with CML-CP who are responsive to but intolerant of treatment with imatinib or dasatinib. Although the study was stopped early due to low recruitment, here we present results on cross-intolerance and molecular response in the patients who were switched from imatinib or dasatinib to nilotinib. Methods: Eligible adult patients had: Ph+ CML-CP associated with BCR-ABL quantifiable by real-time quantitative reverse transcriptase-polymerase chain reaction (RQ-PCR); received ≥3 months imatinib or dasatinib or both; were <1% (IS) BCR-ABL level in the blood during imatinib or dasatinib treatment; and were experiencing any non-hematological AEs (any grade) that persisted for ≥1 month or recurred at least once despite supportive care. After a washout period of ≥3 days, patients were switched to nilotinib 300 mg BD and treated for up to 24 months. The dose could be reduced to 450 mg QD for safety reasons. Treatment interruptions, dose reductions and dose re-escalation to 300 mg BD were allowed for management of AEs. The primary outcome was achievement of MR4.5 (BCR-ABL ≤0.0032%) by 24 months. Major molecular response (MMR; BCR-ABL ≤0.1%) and MR4.0 (BCR-ABL ≤0.01%) were also assessed in an exploratory capacity at each visit (month 1, 2, 3, then every 3 months to month 24). Secondary endpoints included the kinetics of molecular response. Preliminary results are summarized descriptively. Planned enrolment was 130 patients. Results: The study was stopped early due to low recruitment; 20 patients were enrolled (mean age 53.9 years [range 31-77]; 14 female). 16 patients had received prior imatinib therapy, 4 patients prior dasatinib. Median nilotinib treatment duration was 494 days (mean 480, SD 167.6 days). At screening, 30% of patients were not in MMR, 45% had MMR and 25% had MR4.0. By month 3 and 24 of nilotinib treatment, 55% (11/20) and 65% (13/20) of patients, respectively, achieved at least a 1 log reduction in BCR-ABL levels. 35% (7/20) of patients achieved MR4.5 between baseline and month 3 of nilotinib treatment, and 50% (10/20) achieved MR4.5 at any time up to month 24. The proportion of patients with a molecular response at each visit up to month 15 is shown in the Figure. AEs during prior treatment with imatinib and dasatinib included gastrointestinal events (nausea, vomiting, diarrhea), superficial edema, myalgia, fatigue, rash, and headache, among others. 68% of AEs had resolved by month 3 of nilotinib treatment. Among the 13 evaluable patients on prior imatinib, 7 (54%) had resolution of all AEs during treatment with nilotinib; of 3 evaluable patients on prior dasatinib, 3 (100%) had AE resolution on nilotinib. Grade 3/4 AEs during nilotinib therapy occurred in 3 patients: diabetes mellitus, fatigue, neutropenia, pneumonia, osteoarthritis, and hyperuricemia. Conclusions: Although early termination of the study has not allowed for a robust analysis, these results suggest that nilotinib is effective and well tolerated in most patients intolerant of imatinib or dasatinib. During the first 3 months of switching to nilotinib, 55% of patients had achieved at least a 1 log reduction in BCR-ABL levels, and 35% of patients had achieved MR4.5. The cumulative rate of MR4.5 by 24 months was 50%. Achievement of this endpoint has been linked to favorable long-term outcomes, such as treatment-free remission. Furthermore, the majority of the AEs had resolved by month 3 of nilotinib therapy. This improved tolerance to nilotinib may result in improved treatment adherence. As such, although further study in a larger population is needed for confirmation, these results provide further evidence that nilotinib is a favorable option to establish a molecular response in patients intolerant of imatinib or dasatinib. Disclosures D'Rozario: BMS: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria. Branford:Qiagen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Research Funding; Ariad: Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cepheid: Consultancy. Yeung:Ariad: Research Funding; Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Anderson:Novartis Pharmaceuticals: Employment. Gervasio:Novartis Pharmaceuticals: Employment. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1130-1130 ◽  
Author(s):  
Jerald P. Radich ◽  
Giovanni Martinelli ◽  
Andreas Hochhaus ◽  
Enrico Gottardi ◽  
Simona Soverini ◽  
...  

Abstract Abstract 1130 Poster Board I-152 Background Nilotinib is a selective and potent BCR-ABL inhibitor, with in vitro activity against most BCR-ABL mutants (excluding T315I) indicated for the treatment of patients with Philadelphia chromosome positive (Ph+) CML in CPor AP resistant or -intolerant to prior therapy, including imatinib. In a previous analysis of nilotinib in patients with BCR-ABL mutations, mutations occurring at three specific amino acid residues (E255K/V, Y253H, and F359C/V) were shown to be associated with less favorable response to nilotinib. The current analysis is based on mature data with a minimum follow-up of 24-months for all patients. Outcomes of patients at 24 months were analyzed by mutation type. Methods Imatinib-resistant CML-CP (n = 200) and CML-AP (n = 93) patients were subdivided into the following mutational subsets: no mutation, sensitive mutations (including mutations with unknown in vitro IC50). or E255K/V, Y253H, or F359C/V mutations at baseline. Patients with mutations of unknown in vitro sensitivity were classified as sensitive in this analysis based on a previous finding that patients with these mutations responded similarly to nilotinib as patients with sensitive mutation. Patients with baseline T315I mutations were excluded from this analysis. Patient groups were analyzed for kinetics and durability of cytogenetic and molecular response to nilotinib, as well as event-free survival (EFS), defined as loss of hematologic or cytogenetic response, progression to AP/BC, discontinuation due to disease progression, or death, and overall survival (OS). Results In CML-CP and -AP patients with no mutation, sensitive mutations, or E255K/V, Y253H, or F359C/V mutations, hematologic, cytogenetic and molecular responses are provided in the Table. Overall, patients with no mutations responded similarly to patients with sensitive mutations, whereas patients with E255K/V, Y253H, or F359C/V mutations had less favorable responses. This correlation was observed in both CML-CP and CML-AP patients, respectively. Median time to CCyR was 3.3 months (range, 1.0–26.7) for CML-CP patients with no mutations, and 5.6 months (range, 0.9–22.1) for patients with sensitive mutations. At 24 months, CCyR was maintained in 74% of CML-CP patients with no mutation and in 84% of patients with sensitive mutations. One patient with CML-CP and an E255K mutation achieved CCyR at 25 months and maintained until last assessment at 30 months. Median time to MMR was similar at 5.6 months (range, 0.9–25.8) for CML-CP patients with no mutations and 5.6 months (range, 2.7–22.1) for patients with sensitive mutations. No patient with a less sensitive mutation achieved MMR. Median EFS and 24-month estimated OS rate are provided in the Table. Conclusions Imatinib-resistant CML-CP and CML-AP patients treated with nilotinib therapy with BCR-ABL mutations (excluding E255K/V, Y253H, or F359C/V) achieved rapid and durable cytogenetic responses, and estimated EFS and OS at 24 months similar to that of patients with no mutations, respectively. Patients with E255K/V, Y253H, or F359C/V mutations had lower and less-durable responses and shorter EFS than patients with sensitive mutations. Alternative therapies may be considered for patients with these uncommon mutations (E255K/V, Y253H, and F359C/V). Disclosures Radich: Novartis: Consultancy, Honoraria, Research Funding. Hochhaus:Novartis: Research Funding. Branford:Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. Shou:Novartis: Employment. Haque:Novartis: Employment. Woodman:Novartis: Employment. Kantarjian:Novartis: Research Funding. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding. Kim:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Saglio:Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1578-1578 ◽  
Author(s):  
Franck E. Nicolini ◽  
Gabriel Etienne ◽  
Viviane Dubruille ◽  
Lydia Roy ◽  
Françoise Huguet ◽  
...  

Abstract Background & aims In the Nilopeg trial (EudraCT 2010-019786-28), we have previously demonstrated that the combination of nilotinib (Tasigna® Novartis), a second generation inihibitor (TKI2), combined to pegylated interferon-alpha 2a (Peg-IFN, Pegasys®, Roche) in de novo chronic phase chronic myeloid leukemia (CP-CML) patients is able to induce high rates of molecular responses with an acceptable additional toxicity (F. E. Nicolini et al. Lancet Haematology 2015) within 24 months of follow-up. We report here the ≥4-year follow-up of such patients for toxicity and efficacy. Methods In a phase 2 study, newly diagnosed CP-CML patients were assigned to a priming strategy by Peg-IFN (± HU) for a month at 90 mg/wk, prior to a combination of nilotinib 300 mg BID + Peg-IFN 45 micro.g/wk for ≥ 1 year, maximum 2 years. After 2 years nilotinib was continued alone. The primary endpoint was the rate of confirmed molecular response 4.5 (MR4.5) by 1 year. Molecular assessments were centralised for all patients and expressed as BCR-ABLIS in % for 2 years and then performed in each center [all expressed in % on the international scale (IS)]. All data presented here are in intention-to-treat. Events were defined as death, progression to AP or BC, failure on nilotinib or nilotinib treatment discontinuation for any cause excluding treatment-free remission (TFR). Results Fourty-two patients were enrolled in this trial (one withdrawn its consent prior to treatment initiation), and the median follow-up is now 50.7 (47.8-52.8) months. Sokal and Euro scores were high for 12% and 2%, intermediate for 49% and 55% and low for 39% and 43% of the patients respectively. The median age at treatment initiation was 53 (23-85) years, 2 patients had a masked Philadelphia chromosome, 3 a variant form, and 1 additional chromosomal abnormalities, all patients had "major" BCR-ABL1 transcripts. The rates of Complete Cytogenetic Responses (CCyR) at "6", and "12" months of combination (i. e. at 5 and 11 months of TKI2) were 71%, and 100% respectively. Eighty seven percent of patients had a BCR-ABLIS ≤10% at M3 (i. e. after 2 months TKI). The rates of molecular responses respectively at 12, 24, 36 and 48 months were 76%, 78%, 83%, 73% for MMR, 51%, 58.5%, 66%, 58.5% for 4 log reduction (MR4), 17%, 34%, 34%, 44% for 4.5 log reduction (MR4.5), 12%, 32%, 29%, 41.5% for ≥5 log reduction (MR5), shown as cumulative incidence curves for MR4.5 in figure 1. The median doses of Peg-IFN delivered to the patients during the first year were 45 (0-45) micro.g/wk, and for nilotinib 600 (300-600) mg daily. Interestingly, logistic regression analysis adjusted on MR4.5 responses showed a significant relationship with the mean doses of Peg-IFN delivered to the patients at 12 months (p=0.003, OR = 1.09 [1.03-1.16]), 24 months (p=0.005, OR = 1.08 [1.02-1.14]) and 48 months (p=0.024, OR = 1.09 [1.01-1.17], but not with the mean doses of nilotinib [p=0.84, OR = 0.99 [0.99-1.01], p=0.087, OR = 1 [0.99-1.01], and p=0.88, OR = 1 [0.99-1.01] respectively. Eight patients (19.5%) were in TFR for a median of 6.8 (0.5-9.5) months after 2-year consecutive MR4.5, and none lost MMR yet at last follow-up. One patient died of progression (unmutated myeloid blast crisis at M6, who relapsed after unrelated allogeneic stem cell transplantation). There was no additional grade 3-4 hematologic or biochemical toxicities occurring after 24 months. At last follow-up 10 patients switched for another TKI (2 for dasatinib, 5 for imatinib, and 3 for imatinib followed by dasatinib), for unsufficient cytogenetic or molecular response (2 patients) or for toxicity (7 patients). Overall, 4 patients presented some cardio-vascular events 3 coronary stenoses, one brain stroke). Conclusion Despite additional initial toxicities Peg-IFN priming strategy, followed by the combination of nilotinib and Peg-IFN during the first year induces very high rates of durable deep molecular responses (MR4 and MR4.5) at later time-points, offering TFR for number of patients. To date, no emerging severe adverse events occurred. However, to confirm these promising results, a randomised phase III study testing nilotinib versus nilotinib + Peg-IFN is absolutely warranted and in progress. Figure 1. Cumulative incidence of MR4.5 Figure 1. Cumulative incidence of MR4.5 Disclosures Nicolini: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Ariad Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Etienne:ARIAD: Consultancy, Honoraria, Speakers Bureau; Novartis: Consultancy, Honoraria, Other: Congress Travel/Accomodations, Research Funding, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Roy:BMS: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Huguet:Novartis: Consultancy, Research Funding; BMS: Consultancy, Speakers Bureau; ARIAD: Consultancy, Speakers Bureau; PFIZER: Consultancy, Speakers Bureau. Legros:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Research Funding, Speakers Bureau. Giraudier:Novartis: Speakers Bureau. Coiteux:BMS: Speakers Bureau; ARIAD: Speakers Bureau; Novartis: Speakers Bureau. Guerci-Bresler:ARIAD: Speakers Bureau; BMS: Speakers Bureau; Novartis: Speakers Bureau; PFIZER: Speakers Bureau. Rea:Pfizer: Honoraria; Ariad: Honoraria; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Amé:BMS: Speakers Bureau; Novartis: Speakers Bureau. Cony-Makhoul:Novartis: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau. Gardembas:Novartis: Speakers Bureau. Hermet:Novartis: Speakers Bureau; BMS: Speakers Bureau. Rousselot:Pfizer: Consultancy; BMS: Consultancy, Speakers Bureau; Novartis: Speakers Bureau. Mahon:ARIAD: Consultancy; Bristol-Myers Squibb: Consultancy, Honoraria; Pfizer: Consultancy; Novartis: Consultancy, Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3771-3771 ◽  
Author(s):  
David T Yeung ◽  
Michael Philip Osborn ◽  
Deborah L White ◽  
Susan Branford ◽  
Michael Kornhauser ◽  
...  

Abstract Abstract 3771 Background: We have previously reported promising results from the TIDEL-II trial, using imatinib (IM) treatment upfront in patients (pts) newly diagnosed with Philadelphia chromosome positive Chronic Myeloid Leukaemia in Chronic Phase (CML-CP), and switching selected pts to nilotinib (NIL) on the basis of failure to achieve time-dependent molecular response (MR). This strategy showed excellent rates of major molecular response (MMR; BCR-ABL ≤0.1% IS) at 12 months (mos) and transformation free survival. Aim: To optimise molecular outcome and survival in treatment naïve CML-CP pts by selective dose escalation of IM for pts with low trough levels and early switching to NIL for pts with poor MR. Methods: TIDEL-II enrolled 210 CML-CP pts across 23 Australasian centres in 2 equal and sequential cohorts. All pts started treatment with IM 600mg/d and dose escalated to IM 800mg/d if IM trough levels were <1000ng/mL. A series of time-dependent MR targets were set: BCR-ABL ≤10%, ≤1% and ≤0.1% (IS) at 3, 6 and 12 mos. Cohort 1 (C1) pts failing to meet these targets dose escalated to IM 800 mg/d. Pts who failed to improve molecular response, or were already on IM 800mg/d, switched to NIL 400mg BID. Pts in cohort 2 (C2) who failed these targets switched to NIL directly. Pts with grade III/IV or persistent grade II toxicity were also allowed to switch from IM to NIL. Results: Median follow up (f/u) for C1 and C2 pts were 42 & 24 mos respectively, and 31 mos for all pts (15–56 mos) – see table 1. The primary end-point, confirmed MMR at 12 mos, was achieved by 64%, with no difference between C1 and C2. This climbed to 75% at 24 mos. At 12 & 24 mos, the proportion of pts with confirmed MR4.5 (BCR-ABL ≤ 0.0032% IS) was 18% and 29% respectively. Six pts progressed to blast crisis (BC) : 4 in their 1st year of treatment, and 1 each in the 2nd and 3rd yrs, resulting in 2 deaths. Four other deaths were recorded, caused by stroke (1), pneumonia (1) and cardiac disease (2); 2 pts had NIL treatment before death. Eighteen mutations had been identified in 11 pts, including 4 pts with the highly resistant mutations T315I or E255K either singly or in combination with others. These were identified in the context of BC (3), loss of MMR (2), lack of MMR by 12 mos (4), and lack of CCR by 6 mos (2). One other pt lost MMR in the absence of a mutation and regained MMR with switching to NIL. Thirty-one pts in C1 switched to NIL: 19 for intolerance and 12 for failure to achieve targets after a trial of IM 800mg/d. Of the latter, with median f/u of 26 mos on NIL, 5/12 reached MMR subsequently. In C2, 44 patients switched to NIL, 12 for intolerance and 32 for failing targets: of the latter, 9 reached MMR with median f/u of 14 mos. In contrast, in the 31 (C1+C2) pts switching for IM-intolerance, all but 2 reached MMR (including 12 patients already in MMR at time of switch). Of the 25 pts with BCR-ABL ≥ 10% at 3mos, 3 pts progressed to BC (1 at 3.5mos), 6 more withdrew from study. Of the remainder, four pts achieved MMR, 9 more achieved BCR-ABL<1% but without MMR. None of these 25 pts have achieved MR4.5. (Table 2). Conclusion: Overall, the TIDEL-II strategy compares well with other upfront studies of CML-CP pts with regard to MR, as well as risk of death and progression to BC. A small proportion of pts experience further falls in BCR-ABL when switching from IM to NIL for failure to achieve deep MR. In the 12% of pts who fail to achieve BCR-ABL ≤10% at 3 mos, there is greater risk of BC and so far no deep MR are seen, despite intensification in kinase inhibition instituted at as early as 3 mos. Alternative approaches are needed both to identify these pts early and protect them from disease transformation. Disclosures: Yeung: Novartis Pharmaceuticals: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. White:Novartis Pharmaceuticals: Research Funding; BMS: Research Funding. Branford:Novartis : Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding; Ariad : Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Cepheid : Consultancy. Slader:Novartis Pharmaceuticals: Employment. Hiwase:CSL Ltd: Research Funding. Schwarer:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees. Ross:Novartis: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria. Grigg:Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding. Hughes:Novartis Oncology: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 29-30
Author(s):  
Josep-Maria Ribera ◽  
Olga García ◽  
Pau Montesinos ◽  
Pilar Martinez ◽  
Jordi Esteve ◽  
...  

Background and objective. The combination of tyrosine kinase inhibitors (TKI) and chemotherapy (intensive, attenuated or minimal) has improved the prognosis of patients (pts) with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). The combination of HyperCVAD and ponatinib has improved the molecular response and survival compared with other combinations of chemotherapy with first or second generation TKI (Jabbour E, et al, Lancet Haematol. 2018; 5:e618-e627). The Spanish PETHEMA group conducted the phase 2 PONALFIL trial, which incorporates ponatinib to the same induction and consolidation schedule of the ALL Ph08 trial (Ribera JM et al. Cancer 2019;125:2810-2817) The results of this trial after completed recruitment are herein reported. Patients and method. The PONALFIL trial (NCT02776605) combined ponatinib (30 mg/d) and induction chemotherapy (vincristine, daunorubicin and prednisone) followed by consolidation (high-dose methotrexate, ARA-C, mercaptopurine, etoposide) and allogeneic HSCT. TKI use as maintenance was only scheduled for pts with persistence or reappearance of MRD. By July 2020 the 30 scheduled pts were recruited. The response to therapy (complete morphological [CR], molecular [complete, CMR or major, MMR] after induction and before allogeneic HSCT) (assessed by centralized BCR-ABL/ABL ratio),event-free survival (EFS), overall survival [OS]) and toxicity are herein analyzed. Results. Median age was 50 (20-59) years and 14/30 pts were female. One pt showed CNS involvement at diagnosis. ECOG score at diagnosis was &lt;2 in 86% of pts. Median of WBC count was 6.4 (0.6-359.3) x109/L, Hb 90 (63-145) g/L, platelets 38 (11-206) x109/L. The immunologic phenotype was common in 26 cases, with molecular isoform p190 in 20 patients (67%), p210 in 9 (30%) and p230 in 1 (3%). CR was attained 26/26 patients (100%) (4 are still on induction therapy), with CMR in 11/26 cases (42%), MMR in 6/26 (23%) and no molecular response in 9/26 (35%)).Two patients withdrew the trial (thrombosis of the central retina artery and severe intestinal infection, one case each). Consolidation was given to 24 patients, 2/24 are receiving consolidation and 22 patients received allogeneic HSCT (14 in CMR, 6 in MMR, 2 without molecular response). No relapses before HSCT were detected. No transplant-related mortality was observed to date, but 1 patient withdrew the trial by severe GVHD. Ponatinib was given after HSCT in 4 pts due to loss of molecular response. Three pts relapsed after HSCT, one of them after documented loss of molecular response. All pts are alive (median follow-up of 4.5 months, range 0.5-26.2.2). The EFS probability at 30 months was 91% (79%, 100%) (Figure 1). One hundred and two adverse events (AE) have been registered in 20 patients, 25 of whom were severe (SAE) and occurred in 14 patients, prompting to withdrawn of the trial in 3 (thrombosis of the central artery of the retina, severe bowel infection, grade IV aGVHD, one case each). The most frequent AE were hematologic (26%), gastrointestinal (15%), infections (10%), hepatic (8%) and cutaneous (5%). Cardiovascular events occurred in 2 patients (angor pectoris and thrombosis of central artery of the retina, one case each). Conclusions. The preliminary results of the PONALFIL trial after recruitment completed show a high short-term antileukemic efficacy with acceptable toxicity profile. Supported in part by grant 2017 SGR288 (GRC) Generalitat de Catalunya and "La Caixa" Foundation. Figure 1. Event free survival (EFS) of the whole series. Figure 1 Disclosures Ribera: Pfizer, Amgen, Ariad, Novartis: Consultancy, Speakers Bureau; Pfizer, Amgen: Research Funding. Martinez-Lopez:Incyte: Consultancy, Research Funding; Novartis: Consultancy; BMS: Consultancy, Research Funding; Janssen-cilag: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Garcia-Sanz:Amgen: Membership on an entity's Board of Directors or advisory committees; BMS: Honoraria; Gilead: Honoraria, Research Funding; Incyte: Research Funding; Janssen: Honoraria, Research Funding; Novartis: Honoraria; Pharmacyclics: Honoraria; Takeda: Consultancy, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1125-1125 ◽  
Author(s):  
Michael P Osborn ◽  
Susan Branford ◽  
Deborah L White ◽  
John F Seymour ◽  
Ruth Columbus ◽  
...  

Abstract Abstract 1125 Poster Board I-147 The Australasian Leukaemia and Lymphoma Group conducted a trial (TIDEL I) in 103 patients with newly diagnosed chronic phase CML, using imatinib 600 mg/day with dose escalation to 800 mg/day for suboptimal response. This was defined as failure to achieve (1) complete haematological response (CHR) at 3 months, (2) major cytogenetic response (MCR) at 6 months, (3) complete cytogenetic response (CCR) or molecular equivalent at 9 months, or (4) less than 0.01% (IS) BCR-ABL by RQ-PCR at 12 months. Here we report the outcomes with all surviving patients having been treated for at least 60 months. We aimed to determine whether the patient outcome at 60 months was predicted by the molecular response within the first 18 months of imatinib therapy. The outcomes for patients maintaining a dose of imatinib of ≥600 mg/day in the first 12 months was compared to those who were on a reduced dose for at least part of this time. Event-free survival (EFS) was defined as death from any cause, accelerated phase/blast crisis (AP/BC), and loss of CHR, MCR or CCR. The 103 patients included 66 males and 37 females with a median (±SD) age of 49 (±14) years. All patients had an ECOG performance status of 0-2 at enrolment. The 5-year EFS was 71%, transformation (AP/BC) free survival (TFS) was 95%, and overall survival was 87%. Of the 14 patients who died, 3 died in blast crisis, 2 from transplant-related complications, 8 from CML-unrelated causes, and the cause of death of 1 patient was unavailable. The annual rates of progression to AP/BC over 5 years were 3%, 1%, 0%, 1%, and 0%, while annual event rates were 13%, 8%, 8%, 1%, and 4%. CCR was achieved by 89% of patients by 60 months, while 72% achieved a major molecular response (MMR) by this time. In the first 12 months of treatment, 55% of patients maintained an imatinib dose of ≥600 mg/day (mean ±SD dose = 604 ±10 mg/day), while 45% were on <600 mg/day for at least part of this time (mean ±SD dose = 511 ±100 mg/day). EFS at 60 months was significantly higher in patients taking ≥600 mg/day compared with those who had been dose-reduced to <600 mg/day (89% vs 56%, P<0.001). Annual event rates for the ≥600 mg/day group were 6%, 2%, 2%, 0%, and 2%, while annual event rates for those on <600 mg/day were 14%, 16%, 16%, 8%, and 4%. By 60 months, 96% of patients who had been on ≥600 mg/day within the first 12 months had achieved CCR, while only 80% of those who had been on <600 mg/day had achieved this milestone (P<0.001). Log rank analysis of the achievement of MMR was also significant (P=0.03). Overall survival and TFS after 12 months were both similar between the dosing groups. There was no difference between the dosing groups' median age (50 vs 48 years, P=0.36) or Sokal score (1.04 vs 0.94, P=0.33) that may otherwise account for these results. The outcome was also determined for all patients dependent on the BCR-ABL levels at various assessment timepoints. Patients with a BCR-ABL level of <10% (IS) at 6 months (n=92) had an EFS of 78% at 60 months, while all of those with a level >10% (IS) (n=8) had an event (P<0.001). Patients with a level of ≤1% (IS) at 12 months (equivalent to CCR) (n=81) had an EFS of 75% compared with 25% (n=13) for those with levels >1% (IS) (P<0.001). At 18 months, a level ≤0.1% (IS) (n=58) conferred an EFS of 88%, while those who had failed to attain this depth of response (n=30) had an EFS of 60%. There was a significant difference in EFS between those who had achieved an MMR at 18 months and those who had achieved a CCR, but no MMR (88% vs 67%, P=0.03). In conclusion, our data suggest that patients maintaining a dose of ≥600mg in the first 12 months of imatinib therapy are more likely to achieve CCR and MMR, and superior EFS compared to those with a lower dose. This study also confirms that achieving an MMR by 18 months is associated with improved EFS. This emphasises the value of achieving a molecular response early in the treatment course, as well as adding weight to the evidence supporting the role of molecular monitoring in CML. Disclosures Branford: Novartis Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Honoraria, Research Funding. White:Novartis and Britol-Myers Squibb: Research Funding. Seymour:Bayer Schering: Consultancy, Membership on an entity's Board of Directors or advisory committees, Travel grants; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Travel Grants. Catalano:Roche: Honoraria, Research Funding, Travel grants. Mills:Celgene Pty Ltd: Honoraria, Membership on an entity's Board of Directors or advisory committees. Hughes:Bristol-Myers Squibb: Advisor, Honoraria, Research Funding; Novartis: Advisor, Honoraria, Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3286-3286 ◽  
Author(s):  
Philipp D. le Coutre ◽  
Anna Turkina ◽  
Dong-Wook Kim ◽  
Bernadeta Ceglarek ◽  
Giuliana Alimena ◽  
...  

Abstract Abstract 3286 Poster Board III-1 Introduction: Nilotinib, a potent and highly selective BCR-ABL kinase inhibitor, is approved for the treatment of patients (pts) with Philadelphia chromosome-positive chronic myelogeneous leukemia (Ph+ CML) in chronic phase (CML-CP) and accelerated phase (CML-AP) who are resistant or intolerant to prior therapy including imatinib. The ENACT study is a Phase IIIb, open-label, multicenter study that evaluated the efficacy and safety of nilotinib in adult pts with imatinib-resistant or intolerant CML in a clinical practice setting outside of a registration program. It is the largest single source of efficacy and safety information of any available tyrosine kinase inhibitor (TKI) in CML, particularly among the elderly. Methods: The present is a sub-analysis of the ENACT study on the efficacy and safety of 400 mg twice daily nilotinib in elderly (aged =60 years) pts initiating treatment in CML-CP who were resistant and/or intolerant to imatinib. Results: Of the 1,422 CML-CP pts enrolled in the ENACT study between January 2006 and October 2008, 452 (32%) were elderly (=60 years) at study initiation and 165 (37%) of these pts were =70 years [10 (2%) were =80 years]. Countries that enrolled =20 elderly pts include France, Italy, USA, Germany, UK, Spain, Canada, and Brazil. At study initiation, elderly pts had longer median durations of CML (<60: 51.1 months; =60: 69.3; =70: 66.6) and higher proportions with CML duration >5 years (<60: 43%; =60: 56%; =70: 52%). Besides imatinib, prior CML treatments received by elderly pts included dasatinib (=60: 20%; =70: 19%), cytarabine (=60: 23%; =70: 19%), busulfan (=60: 10%; =70: 7%), and interferons (=60: 50%; =70: 42%). Elderly pts were previously treated with imatinib for longer median durations (<60: 27.4 months; =60: 32.7; =70: 29.9), with higher proportions treated for >5 years (<60: 12%; =60: 19%; =70: 18%). The proportion of imatinib-intolerant to resistant elderly pts was about 1:1, which was higher than the proportion among <60 pts at about 0.6:1, such that relatively few elderly pts had prior highest imatinib dose >800 mg (<60: 34%; =60: 26%; =70: 21%). While response rates to prior imatinib were similar, among pts who required therapy after failing imatinib, elderly pts had lower cytogenetic response rates (<60: 22%; =60: 17%; =70: 19%) to prior dasatinib. During ENACT, less than 50% of elderly pts experienced nilotinib dose interruptions (=60: 46%; =70: 41%) and reductions (=60: 7%; =70: 6%) lasting >5 days, which was consistent with the overall ENACT dataset. The median duration of dose interruptions and reductions was 15 (=70: also 15) and 41 (=70: 32) days, respectively. The main reason for dose interruptions and reductions was adverse events (AEs). The median duration of nilotinib exposure was 227 days (=70: 219) and the median dose intensity was 749 mg/day (=70: 775). Efficacy was similar among elderly pts, with 39% (=70: 35%) of pts achieving complete hematologic response (CHR), 41% (=70: 39%) achieving major cytogenetic response (MCyR) and 31% (=70: 33%) achieving complete cytogenetic response (CCyR). MCyR rate was also similar among elderly hematologic responders (=60: 64%; =70: 65%). Among elderly pts requiring nilotinib therapy after both imatinib and dasatinib, and therefore have more resistant CML, CHR rate was 39% (=70: 32%), MCyR rate was 28% (=70: 29%) and CCyR rate was 20% (=70: 16%). Safety was likewise similar among elderly pts, with grade 3/4 study drug-related AEs occurring in 56% of pts (=70: 53%). The most frequent of these AEs were thrombocytopenia (=60: 24%; =70: 21%) and neutropenia (=60: 14%; =70: 11%). The most common method of managing these AEs was brief dose interruptions and/or reductions [thrombocytopenia (=60:86/108 pts; =70: 30/35), neutropenia (=60: 42/62 pts; =70: 9/18)]. Among elderly pts with prior dasatinib, 53% (=70: 58%) experienced grade 3/4 study drug-related AEs, while 7 out of 8 pts with pleural effusion on dasatinib no longer had it on nilotinib. Conclusions: In ENACT, pts aged =60 years at study initiation appear to have longer durations of CML, be more heavily pre-treated and more intolerant to imatinib than the younger cohort. Nonetheless, nilotinib induced comparable clinical responses in CML-CP pts regardless of age. Importantly, the safety profile of nilotinib is maintained in elderly pts. Disclosures: le Coutre: Novartis: Honoraria, Research Funding; BMS: Honoraria. Turkina:Novartis Pharmaceuticals: Honoraria. Kim:Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. Ceglarek:Novartis Pharmaceuticals: Honoraria. Shen:Novartis Pharmaceuticals: Honoraria. Smith:Novartis Pharmaceuticals: Honoraria. Rizzieri:Novartis Pharma: Honoraria, Research Funding, Speakers Bureau. Szczudlo:Novartis: Employment. Berton:Novartis Pharmaceuticals: Employment. Wang:Novartis Pharmaceuticals: Employment. Wang:Novartis Pharmaceuticals: Research Funding. Nicolini:Novartis Pharma: Consultancy, Honoraria, Research Funding, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding, Speakers Bureau; Chemgenex: Honoraria, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3874-3874
Author(s):  
Josep-Maria Ribera ◽  
Olga García ◽  
Pilar Martinez ◽  
Pau Montesinos Fernandez ◽  
Blanca Boluda ◽  
...  

Background and objective. The combination of tyrosine kinase inhibitors (TKI) and chemotherapy (intensive, attenuated or minimal) has improved the prognosis of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). The combination of HyperCVAD and ponatinib has improved the molecular response and survival compared with other combinations of chemotherapy and first or second generation tyrosine kinase inhibitors (TKI) (Jabbour, et al, Lancet Haematol. 2018; 5:e618-e627). The Spanish PETHEMA group conducts the phase 2 PONALFIL trial, that incorporates ponatinib to the same induction and consolidation schedule of the ALL Ph08 trial (Ribera JM et al. Cancer 2019. doi:10.1002/cncr.32156). The preliminary results of this trial are herein reported. Patients and method. The PONALFIL trial (NCT02776605) combines ponatinib (30 mg/d) and induction chemotherapy (vincristine, daunorubicin and prednisone) followed by consolidation (high-dose methotrexate, ARA-C, mercaptopurine, etoposide) and allogeneic HSCT in de novo Ph+ ALL patients aged 18-60 years. Regular molecular follow-up was performed after alloHSCT. No TKI after HSCT was planned unless persistence or reappearance of molecular disease. On July 2019, 21 out of the 30 patients had been recruited. Molecular studies were centrally carried out according to the Euro-MRD consortium on standardization (Pfeifer et al, Leukemia, 2019; PMID: 30858550). The response to therapy (complete morphological [CR], molecular [complete, CMR or major, MMR] after induction and before allogeneic HSCT), CR duration, overall survival [OS]) and toxicity in the first 21 cases is herein analyzed. Results. Median age was 49 (19-59) years and 12 patients were female. One patient showed CNS involvement at diagnosis. Median WBC count was 12.4 (0.6-79.5) x109/L, Hb 87 (71-140) g/L, platelets 39 (15-180) x109/L. The immunologic phenotype was common in 13 cases, with molecular isoform p190 in 14 patients (67%), p210(b2a2) in 6 (21%) and p210(b3a2) in the remaining patient. CR was attained in 19/19 patients (2 are still on induction therapy), with CMR in 9/18 cases (50%), MMR in 4/18 (22%) and no molecular response in 5/18 (28%) (molecular response analysis pending in 1 patient). Six patients are receiving consolidation, 5 are waiting for allogeneic HSCT and 6 patients have been transplanted (4 in CMR, 1 in MMR, 1 with no data). At the time of the study one patient showed molecular relapse after allogeneic HSCT and is receiving ponatinib, whereas the remaining patients are alive and in CR1 (median follow-up of 3.7 months, range 0.3-18.2) Sixty-nine adverse events (AE) have been registered in 9 patients, 8 of whom were severe (SAE) and occurred in 6 patients, prompting to withdrawn of the trial in 2 (thrombosis of the retinal central artery and severe bowel infection, one case each). The most frequent AE were hematologic (25%), gastrointestinal (14%), infections (7%), and cutaneous (7%). Cardiovascular events occurred in 2 patients (angor pectoris and thrombosis of central artery of the retina, one case each). Conclusions. The preliminary results of the PONALFIL trial show a high short-term antileukemic efficacy with acceptable toxicity profile. Disclosures Fernandez: Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Abbvie: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Teva: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Daiichi Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Incyte: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Esteve:Pfizer: Consultancy; Novartis: Consultancy, Research Funding, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Amgen: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmaceuticals: Consultancy; Roche: Consultancy; Astellas: Consultancy, Speakers Bureau. Bermúdez:Fresenius: Consultancy, Membership on an entity's Board of Directors or advisory committees; MSD: Consultancy, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1666-1666
Author(s):  
Pinkal Desai ◽  
Niamh Savage ◽  
Spencer Krichevsky ◽  
Tania Curcio ◽  
Sangmin Lee ◽  
...  

Introduction: Philadelphia negative myeloproliferative neoplasms (Ph- MPN) are hematopoietic stem cell malignancies associated with poor median survival of 12.4 months. They are often excluded from clinical trials because there are no accepted standards for treatment or assessment of disease response. SGI-110 (guadecitabine) is a second-generation DNA hypomethylating agent (HMA) that is currently in clinical trials for the treatment of myelodysplastic syndrome and acute myeloid leukemia. Guadecitabine was designed to resist degradation by protein aminases and prolong the exposure of tumor cells to the active metabolite decitabine. The purpose of this study was to test the efficacy and safety of SGI-110 in Philadelphia chromosome negative MPNs (Ph- MPN) and to also test the clinical applicability of the International IWG MDS/MPN response criteria in a prospective trial1. Methods: This is an interim analysis of an open label single-arm, single-institution study to evaluate the efficacy and safety of SGI-110 in Philadelphia chromosome negative (Ph-) myeloproliferative Neoplasms as classified by WHO, including chronic neutrophilic leukemia (CNL), atypical chronic myeloid leukemia (aCML), chronic myelomonocytic leukemia (CMML), myelodysplastic/myeloproliferative neoplasm unclassifiable, accelerated phase myelofibrosis and MPN unclassifiable (defined as peripheral and or bone marrow blasts of 10-19%). PV, ET and primary/secondary myelofibrosis were excluded. Patients were required to complete at least 3 cycles of guadecitabine to be considered evaluable for efficacy. Safety analyses were done on all patients who received any treatment with guadecitabine. Guadecitabine was administered subcutaneously at a dose of 60mg/m2 on days 1-5 repeated every 28 days. The IWG MDS/MPN response classification was used to assess treatment response. Results: Baseline characteristics of the study participants are presented in Table 1. Among the 20 treated patients, 2 (10.0%) were treated with previous HMAs, 3 had progressive disease, 1 transferred care, 7 were not yet evaluable for response, and 1 died after receiving only 2 cycles of treatment. Of the 13 evaluable, protocol specific response was seen in 8 (61.5%) patients: 2 (15.4%) achieved complete remission (CR), 3 (23.1%) with optimal marrow response (OMR), 3 (23.1%) with hematological response/clinical benefit (CB). Stable disease was seen in 4 patients (30.8%). Of the 7 patients that were inevaluable: 3 had progressive disease before completing 3 cycles, 2 received <3 cycles of therapy, 1 discontinued treatment due to personal choice, and 1 patient died from infection after receiving 2 cycles of treatment. The median overall survival (OS) for all evaluable patients was 27.4 months with 25.8 months for responders. Median OS for patients who achieved CR was 27.4 months and 25.0 months for OMR. For patients with CB, mean survival was 21.0 months. There was 1 patient with stable disease with prolonged survival (21 cycles), which elevated the mean survival to 26.0 months for the SD category. The median number of cycles to achieve a response was 3. The median times to first and best response were 3.6 and 3.8 months, respectively. The combination of ASXL1 and EZH2 mutations was associated with rapid progression. The most common AEs and SAEs related to guadecitabine are listed in Tables 2 and 3 respectively. Conclusion: SGI-110 was safe and well tolerated in patients with Ph negative MPN, with encouraging efficacy in this difficult-to-treat patient population. Further investigation of this agent in MDS/MPN overlap syndromes is warranted, and the present trial is ongoing. 1. Savona MR, Malcovati L, Komrokji R, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. Mar 19 2015;125(12):1857-1865. Disclosures Desai: Cellerant: Consultancy; Astex: Research Funding; Astellas: Honoraria; Sanofi: Consultancy; Celgene: Consultancy. Lee:Helsinn: Consultancy; Jazz Pharmaceuticals, Inc: Consultancy; Roche Molecular Systems: Consultancy; AstraZeneca Pharmaceuticals: Consultancy; Karyopharm Therapeutics: Consultancy; Ai Therapeutics: Research Funding. Ritchie:Celgene, Incyte, Novartis, Pfizer: Consultancy; Ariad, Celgene, Incyte, Novartis: Speakers Bureau; AStella, Bristol-Myers Squibb, Novartis, NS Pharma, Pfizer: Research Funding; Celgene, Novartis: Other: travel support; Jazz Pharmaceuticals: Research Funding; Celgene: Other: Advisory board; Pfizer: Other: Advisory board, travel support; agios: Other: Advisory board; Tolero: Other: Advisory board; Genentech: Other: Advisory board. Roboz:Trovagene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Sandoz: Consultancy, Membership on an entity's Board of Directors or advisory committees; Roche/Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astex: Consultancy, Membership on an entity's Board of Directors or advisory committees; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bayer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celltrion: Consultancy, Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Consultancy, Membership on an entity's Board of Directors or advisory committees; Eisai: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Jazz: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Orsenix: Consultancy, Membership on an entity's Board of Directors or advisory committees; Otsuka: Consultancy, Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees; Agios: Consultancy, Membership on an entity's Board of Directors or advisory committees; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Actinium: Consultancy, Membership on an entity's Board of Directors or advisory committees; Amphivena: Consultancy, Membership on an entity's Board of Directors or advisory committees; Argenx: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2912-2912
Author(s):  
Jonathan M. Gerber ◽  
Lawrence J. Druhan ◽  
David Foureau ◽  
Elizabeth Jandrisevits ◽  
Amanda Lance ◽  
...  

Abstract Introduction: Recent evidence supports the clinical significance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML). However, the identification of LSCs in acute lymphocytic leukemia (ALL) has proved challenging, as transplantation studies in immunocompromised mice have yielded conflicting results. The distinction between Philadelphia chromosome-positive (Ph+) ALL and lymphoid blast crisis (LBC) chronic myeloid leukemia (CML) is also controversial. We previously identified a clinically relevant CD34+CD38- population of LSCs with intermediate (int) levels of aldehyde dehydrogenase (ALDH) activity (CD34+CD38-ALDHint) in AML [Gerber, et al. Blood, 2012]. This population was not present in healthy controls and could be distinguished from normal hematopoietic stem cells (HSCs), which had higher levels of ALDH activity (CD34+CD38-ALDHhigh). We hypothesized that the same approach could be used to identify a putative LSC population in ALL. Furthermore, in contrast to most cases of AML, the chronic phase CML stem cell was found to reside in the same CD34+CD38-ALDHhigh population as normal HSCs [Gerber, et al. Am J Hematol, 2011]. We therefore also hypothesized that the presence of BCR/ABL mutations in the CD34+CD38-ALDHhigh population might help distinguish LBC CML from Ph+ ALL. Methods: Bone marrow and/or peripheral blood specimens were collected at diagnosis from patients with B cell ALL or LBC CML on an IRB-approved protocol. A total of 7 patients were evaluated: 2 Ph- ALL, 2 Ph+ ALL, and 3 LBC CML patients. CD34+ cells were isolated by magnetic bead and column selection, then analyzed by flow cytometry with respect to CD38 expression and ALDH activity. Sorted cell populations were analyzed by fluorescence in situ hybridization (FISH) for leukemia-specific abnormalities. Polymerase chain reaction was performed on clinical samples to determine the presence of a p190 vs. p210 transcript. Results: All patients harbored an aberrant CD34+CD38-ALDHint population, similar to that previously seen in AML. This population was ≥95% positive for BCR/ABL by FISH in all Ph+ ALL and LBC CML cases. It was similarly positive (≥75%) for other leukemia-specific FISH abnormalities (including trisomy 4, 8, 10, 12, and/or 21) in all four ALL cases, as well as one LBC CML case. Conversely, the CD34+CD38-ALDHhigh population (which typically contains the normal HSCs) lacked any of the other cytogenetic abnormalities in all of the cases, irrespective of Ph status or a diagnosis of ALL vs. CML. Notably, the CD34+CD38-ALDHhigh population was negative for BCR/ABL in the Ph+ ALL cases but was >95% positive for BCR/ABL by FISH in the LBC CML cases. The B cell differentiation marker, CD19, was expressed on the CD34+CD38-ALDHint but not the CD34+CD38-ALDHhigh population in all ALL cases, both Ph- and Ph+. In contrast, CD19 expression was variable in the LBC CML cases. Both Ph+ ALL cases possessed a p190 BCR/ABL transcript, whereas all of the LBC CML cases contained a p210 transcript. Also of note, the CD34+CD38-ALDHint population was persistently detectable in one of the LBC CML patients while in complete remission after induction therapy; that patient subsequently relapsed. Conclusions: An abnormal CD34+CD38-ALDHint population was identified in all cases of B cell ALL and LBC CML. This population is analogous to a previously identified, clinically relevant LSC population in AML and may represent a putative LSC population in ALL. The CD34+CD38-ALDHhigh population was normal by FISH in the ALL cases but contained the BCR/ABL mutation in the LBC CML cases, thus permitting distinction between Ph+ ALL and LBC CML (which also differed based on the presence of p190 vs. p210 transcripts, respectively). Additionally, clonal evolution from chronic phase to lymphoid blast crisis CML was apparent, based on the acquisition of additional cytogenetic abnormalities unique to the CD34+CD38-ALDHint population as compared to the CD34+CD38-ALDHhigh population. The presence of CD19 on the putative LSCs in the four cases of ALL suggest that CD19-directed therapies may target the LSCs and thus may have curative potential in those cases. This assay may serve as a means to evaluate other possible therapeutic targets. Lastly, the detection of the abnormal CD34+CD38-ALDHint population may have utility as a minimal residual disease assay for monitoring response to treatment. These findings warrant validation in a larger patient cohort. Disclosures Gerber: Janssen: Research Funding; Alexion: Membership on an entity's Board of Directors or advisory committees; Spectrum: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees. Grunwald:Alexion: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Incyte Corporation: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Medtronic: Equity Ownership; Janssen: Research Funding; Ariad: Membership on an entity's Board of Directors or advisory committees; Forma Therapeutics: Research Funding. Avalos:Seattle Genetics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2271-2271
Author(s):  
Andreas L Petzer ◽  
Dominic Fong ◽  
Thomas Lion ◽  
Irina Dyagil ◽  
Zvenyslava Masliak ◽  
...  

Abstract Abstract 2271 Introduction: Imatinib 400 mg/day represents the current standard treatment for de novo as well as pre-treated CML patients in chronic phase (CP). Recent randomized phase III trials revealed conflicting results concerning the potential higher efficacy of dose-increased imatinib in de novo treated CP-CML. Methods: We here present the final analyses including response data, OS, EFS and PFS of the multicenter, randomised, 2-arm phase III CELSG “ISTAHIT” trial evaluating imatinib high dose (HD) induction (800 mg/day, 6 months) followed by 400 mg/day as maintenance (experimental arm B) compared to continuous imatinib standard dose (400mg/day; arm A) in pre-treated CP CML patients. ClinicalTrials.gov Identifier: NCT0032726. Results: From a total of 243 patients screened for inclusion, 16 patients were not eligible (mainly due to non sufficient numbers of metaphases obtainable from the bone marrow before the start of the study). Of the remaining 227 patients, 113 patients were randomized into arm A and 114 patients into the experimental arm B. Subsequent data are presented as per protocol. No significant differences between treatment groups were observed regarding sex (55.5% female, 44.5% male), age (median: 46.3 years, range 18 –76), Sokal scores at diagnosis (30% low, 41% intermediate, 16% Sokal high risk, 13% unknown) and different pre-treatments, which included hydroxyurea (96%), interferon (72%), busulfan (17%) and “others” (26%; mainly Ara-C). The median observation time was 673 days. Cytogenetic responses were generally higher in the experimental arm B and revealed statistically significant differences in major cytogenetic responses (MCyR) at 3 and 6 months (month 3: 25.8% arm A, 48.3% arm B, p=0.002; month 6: 41.9% arm A, 58.8% arm B, p=0.029) as well as in complete cytogenetic responses (CCyR) not only during imatinib HD therapy (month 3: 7.5% arm A, 29.9% arm B, p<0.001; month 6: 20.4% arm A, 47.4% arm B, p<0.001) but also thereafter (month 12: 31.8% arm A, 52.9% arm B, p=0.006). The primary endpoint of the study, the achievement of an improved MCyR at 12 month was, however, not significantly different (56.8% arm A, 64.4% arm B). In line with improved cytogenetic responses, major molecular response (MMRIS) rates were also significantly better at 3, 6 and even at 24 months in the HD arm B (month 3: 3.7% arm A, 15.9% arm B, p=0.003; month 6: 9.4% arm A, 34.6% arm B, p<0.001; month 24: 26.5% arm A, 42.5% arm B, p=0.034). Surprisingly, however, this impressing improvement in cytogenetic and molecular remissions in patients achieving high dose imatinib as induction therapy did not translate into a better OS and PFS, both of which were comparable in the two treatment arms (OS: p=0.25; EFS: p=0.37). Moreover, the EFS was even significantly worsened in the experimental arm B (p=0.014). Grade 3/4 non-haematological toxicities during the first 6 months of therapy were comparable, whereas grade 3/4 haematological toxicities were significantly more common in the imatinib HD arm B. Conclusions: Although high dose imatinib induction induces more rapid and higher cytogenetic and molecular remission rates in pre-treated CP CML patients, OS as well as PFS were not improved and EFS was even worsened in the high dose induction arm B. Therefore we conclude that imatinib 400mg/day remains the standard of care for pre-treated CP-CML patients. Disclosures: Petzer: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Off Label Use: Imatinib 800mg is not licensed as the initial therapy of chronic phase CML. Lion: Novartis: Honoraria, Research Funding. Bogdanovic: Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Griskevicius: Novartis: Research Funding. Kwakkelstein: Celgene: Employment. Rancati: Novartis: Consultancy, Employment, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. Gastl: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Wolf: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document