scholarly journals Comparison of sizes and shapes of tumor cells in plasma cell leukemia and plasma cell myeloma

Blood ◽  
1979 ◽  
Vol 53 (5) ◽  
pp. 1028-1030 ◽  
Author(s):  
T Isobe ◽  
Y Ikeda ◽  
H Ohta

Abstract Thirteen cases of plasma cell leukemia and 13 cases of nonleukemia plasma cell myeloma were compared with respect to the sizes and shapes of tumor cells in marrow smears. It was demonstrated that the leukemia cells were elongated or ovoid and significantly smaller in size, whereas the myeloma cells were generally more nearly round and larger.

Blood ◽  
1979 ◽  
Vol 53 (5) ◽  
pp. 1028-1030
Author(s):  
T Isobe ◽  
Y Ikeda ◽  
H Ohta

Thirteen cases of plasma cell leukemia and 13 cases of nonleukemia plasma cell myeloma were compared with respect to the sizes and shapes of tumor cells in marrow smears. It was demonstrated that the leukemia cells were elongated or ovoid and significantly smaller in size, whereas the myeloma cells were generally more nearly round and larger.


2021 ◽  
pp. 1-10
Author(s):  
Youngeun Lee ◽  
Jiwon Yun ◽  
Dajeong Jeong ◽  
Sohee Ryu ◽  
Seok Ryun Kwon ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Akihito Fujimi ◽  
Yasuhiro Nagamachi ◽  
Naofumi Yamauchi ◽  
Yuji Kanisawa

A 48-year-old man was diagnosed with multiple myeloma (IgG-k) and was treated with high-dose dexamethasone as an induction therapy followed by thalidomide-based regimens. Approximately 22 months after the initial diagnosis, the patient developed secondary plasma cell leukemia (PCL) with a white blood cell (WBC) count of 20.2 × 109/L including 79.5% plasma cells. A G-banding chromosomal analysis in the bone marrow showed an t(11;14) abnormality of up to 5%, which was not detected at initial diagnosis. We immediately started bortezomib and dexamethasone therapy, but in just 7 days, the WBC count elevated to 48.5 × 109/L, and approximately 95% of them were medium-sized atypical lymphoid cells with multilobated nuclei. Although we subsequently initiated alternative regimens, the patient’s condition deteriorated, and he died 4 months after developing PCL. Approximately 2 months before his death, the diameter of myeloma cells in the bone marrow enlarged by approximately twofold, and pleomorphic nuclei were present, indicating an anaplastic myeloma transformation. Concurrently, a 100% increase of the t(11;14) clone frequency was observed in the G-banding-analyzed bone marrow cells. Morphological transformation of myeloma cells into multilobated plasma cell nuclei can be considered as the starting point of the sequential process leading to anaplastic myeloma.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5122-5122
Author(s):  
Albert Oriol ◽  
Ignasi Barba ◽  
Angels Barbera ◽  
Carles Arús ◽  
Jose-Luis Garcia-Dorado ◽  
...  

Abstract Advancements in the pathogenetic pathways in multiple myeloma have led to the identification of several primary and secondary genetic lesions and ultimately to a multiple myeloma genetic classification with prognostic implications. Although disregulation of cyclin activity has been recognized as a key event leading to the multiple myeloma phenotype, little is known about the metabolic consequences of this phenomenon. We have studied intact multiple myeloma cells by high resolution magnetic resonance spectroscopy to establish the metabolomic profiles of different native multiple myeloma cells as compared to other lymphoproliferative disorders. Multiple myeloma cells obtained from bone marrow aspirates (n =15), blood (n =3) or other biologic tissues (n =2) from 20 multiple myeloma patients and separated by density gradient centrifugation were evaluated and metabolic profiles were correlated with cytogenetic characteristics of the disease and patients clinical characteristics. Twelve patients were females (60%) with a median age of 65 years (range 50–82). Multiple myeloma monoclonal proteins were IgG (N=9), IgA (N=5) or BJ (N=6). Five of them (25%) had renal insufficiency. Nine patients (45%) had predominantly extramedullar diesase including four cases of plasma cell leukemia. IgH translocations were identified in 5 samples (25%), hyperploidy in 2 (10%), and other or no genetic lesions in 13 (65%), del13 was present in 9 samples (45%) and p53 alterations in 5 (25%). Bone marrow samples from thirteen patients with conventional multiple myeloma presented a relatively constant metabolic pattern with predominantly lipidic signals and a metilen to metil ratio ranging from 1.9 to 4.9 (median 2.9). No differences in this pattern were observed among subgroups of primary translocations or involvement of Rb and p53 genes. Four patients with plasma cell leukemia and three with predominant extranodal disease presented either non detectable lipid signals (N=3) or a higher metilen to metil ratio ranging from 2.8 to 3.9 (median 3.5). In fact, extranodal or leukemic disease was significantly associated to undetectable lipids (P < 0.031) or the composite variable undetectable lipids or metilen to metil ratio > 3 (P < 0.043). Furthermore, after a median follow-up of 18 months, absence of lipids in the metabolic profile was also associated to a shorter survival (median 0.45 years, 95%CI 0–1.03 versus 3 years, 95%CI 0.95–5.06, P < 0.022). These results suggest that metabolic profiles of different multiple myeloma genetic subtypes share common and reletively constant characteristics, while cells obtained from patients with plasma cell leukemia or predominantly extramedullar disease present a clearly distinct profile, probably reflecting the metabolic effect of clonal evolution at a genetic level.


1992 ◽  
Vol 39 (3) ◽  
pp. 159-162 ◽  
Author(s):  
Chihiro Shimazaki ◽  
Hideo Gotoh ◽  
Eishi Ashihara ◽  
Naritoshi Oku ◽  
Tohru Inaba ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1901-1901
Author(s):  
Fedor Kryukov ◽  
Ivana Ihnatova ◽  
Pavel Nemec ◽  
Alexander Schmitz ◽  
Julie S Brødker ◽  
...  

Abstract Background In multiple myeloma (MM), unlike normal plasma cells (PC), myeloma cells retain the self-renewing potential. Majority of medullary myeloma cells regardless over-expression of cyclins D stay in the G1 phase due to pro-apoptotic and cell cycle regulatory capacity of p53 depended axis. Nevertheless, after leukemic transformation in secondary plasma cell leukemia (PCL) or de novo in case of primary PCL, bone marrow myeloma cells become highly proliferative and even presenting as circulating plasma cells in the peripheral blood. We anticipate that complex “re-setting” of cell cycle gene coordination during leukemic transformation creates required background to restore proliferation activity and breakthrough mitotic restriction points. Aims The objective of our study was to define and describe complex “re-setting” of cell cycle gene coordination in MM and PCL. Materials and Methods In total, 7 healthy donors, 6 multiple myeloma and 7 plasma cell leukemia samples enrolled in this study. The mRNA from CD138+ cells was isolated using uMACS mRNA Isolation Kit Small scale (Miltenyi Biotech) and directly amplified and labeled using WT-Ovation™ Pico RNA Amplification System Version 1.0 plus WT-Ovation™ Exon Module Version 1.0 (NuGEN). Generated SPIA-cDNA was fragmented & labeled using Encore™ Biotin Module (NuGEN). cDNA was hybridized to Affymetrix GeneChip Human Exon 1.0 ST Arrays (Affymetrix, Santa Clara, USA). All samples were labeled and scanned in a randomized order to avoid batch effects. Gen sets, connected with cell cycle regulation (GO:0045786; GO:0045787) with all direct descendants (child terms) and regulation of apoptotic process (GO:0043065; GO:0043066), were taken for the Gene Set Enrichment Analysis (GSEA) and Gene Set Differential Coordination Analysis (GSDCA). Results Comparing of PCL, MM and healthy donors revealed coordinating changes between regulation of mitosis (GO:0045839; GO:0045840), apoptosis (GO:0043065; GO:0043066) and cell cycle arrest (GO:0007050). These changes were relevant for both positive and negative regulation sets. Gene expression profiling of MM samples revealed affected early phases of cell cycle (G1 phase and G1/S transition). In PCL samples co-expression changes was associated with late phases of cell cycle (G2/M transition, S and M phase) together with severe alteration in early phases. The mechanisms controlling differential cell cycle coordination were based on bioinformatic analysis suggested to include alternative transcription start sites, exon skipping and shortening of 3'UTR. The probe sets covering the 3'UTR of CCND2 were for example significantly down regulated in plasma cells of MM and PCL as compared to healthy donors supporting the existence of a phenomenon observed in breast cancer where shortening of 3'UTR mRNA CCND2 confers higher mRNA stability leading to higher protein expression and more cells to enter the S phase. Conclusion Considering revealed coordination changes allow us to offer following statements. Expression of cell cycle positive regulators is in dynamic equilibrium with cell cycle negative regulators. We suppose that this equilibrium serves as a compensatory mechanism to oncogenic events. Despite compensation mechanisms activation, whole regulatory complex seems to be imbalanced by growing “oncogenic stress” during MM to PCL progression. This study was supported by grants NT11154, NT12130, NT13190 and the EU 6th FP to MSCNET (LSHC-CT-2006-037602), the Danish Cancer Society, the Danish Research Agency (#2101-07-0007) and the KE Jensen Foundation (2006-2008). Disclosures: No relevant conflicts of interest to declare.


1978 ◽  
Vol 36 (6) ◽  
pp. 331-338 ◽  
Author(s):  
V. Diehl ◽  
M. Schaadt ◽  
H. Kirchner ◽  
K. -P. Hellriegel ◽  
F. Gudat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document