scholarly journals Acquired amegakaryocytic thrombocytopenic purpura: a syndrome of diverse etiologies

Blood ◽  
1982 ◽  
Vol 60 (5) ◽  
pp. 1173-1178
Author(s):  
R Hoffman ◽  
E Bruno ◽  
J Elwell ◽  
E Mazur ◽  
AM Gewirtz ◽  
...  

The possible pathogenetic mechanisms responsible for the production of acquired amegakaryocytic thrombocytopenic purpura (AATP) were investigated in a group of patients with this disorder. Absence of megakaryocytes and small platelet glycoprotein-bearing mononuclear cells, as determined by immunochemical staining of patient marrows with an antisera to platelet glycoproteins, suggested that the defect in AATP occurs in an early progenitor cell of the megakaryocytic lineage. Using an in vitro clonal assay system for negakaryocytic progenitor cells or megakaryocyte colony-forming units (CFU-M), the proliferative capacity of AATP marrow cells was then assessed. Bone marrow cells from three of four patients formed virtually no megakaryocyte colonies, suggesting that in these individuals the AATP was due to an intrinsic defect in the CFU-M. Bone marrow cells from an additional patient, however, formed 12% of the normal numbers of colonies, providing evidence for at least partial integrity of the CFU-M compartment in this patient. Serum specimens from all six patients were screened for their capacity to alter in vitro megakaryocyte colony formation. Five of six sera enhanced colony formation in a stepwise fashion, demonstrating appropriately elevated levels of megakaryocyte colony- stimulating activity. The serum of the patient with partial integrity of the CFU-M compartment, however, stimulated colony formation only at low concentrations. At higher concentrations, this patient's serum actually inhibited the number of colonies cloned, suggesting the presence of a humoral inhibitor to CFU-M. Serum samples from all patients were further screened for such humoral inhibitors of megakaryocyte colony formation using a cytotoxicity assay. The patient whose serum was inhibitory to CFU-M at high concentrations was indeed found to have a complement-dependent serum IgG inhibitor that was cytotoxic to allogeneic and autologous marrow CFU-M but did not alter erythroid colony formation. These-studies suggest that AATP can be due to at least two mechanisms: either an intrinsic effect at the level of the CFU-M or a circulating cytotoxic autoantibody directed against the CFU-M.

Blood ◽  
1982 ◽  
Vol 60 (5) ◽  
pp. 1173-1178 ◽  
Author(s):  
R Hoffman ◽  
E Bruno ◽  
J Elwell ◽  
E Mazur ◽  
AM Gewirtz ◽  
...  

Abstract The possible pathogenetic mechanisms responsible for the production of acquired amegakaryocytic thrombocytopenic purpura (AATP) were investigated in a group of patients with this disorder. Absence of megakaryocytes and small platelet glycoprotein-bearing mononuclear cells, as determined by immunochemical staining of patient marrows with an antisera to platelet glycoproteins, suggested that the defect in AATP occurs in an early progenitor cell of the megakaryocytic lineage. Using an in vitro clonal assay system for negakaryocytic progenitor cells or megakaryocyte colony-forming units (CFU-M), the proliferative capacity of AATP marrow cells was then assessed. Bone marrow cells from three of four patients formed virtually no megakaryocyte colonies, suggesting that in these individuals the AATP was due to an intrinsic defect in the CFU-M. Bone marrow cells from an additional patient, however, formed 12% of the normal numbers of colonies, providing evidence for at least partial integrity of the CFU-M compartment in this patient. Serum specimens from all six patients were screened for their capacity to alter in vitro megakaryocyte colony formation. Five of six sera enhanced colony formation in a stepwise fashion, demonstrating appropriately elevated levels of megakaryocyte colony- stimulating activity. The serum of the patient with partial integrity of the CFU-M compartment, however, stimulated colony formation only at low concentrations. At higher concentrations, this patient's serum actually inhibited the number of colonies cloned, suggesting the presence of a humoral inhibitor to CFU-M. Serum samples from all patients were further screened for such humoral inhibitors of megakaryocyte colony formation using a cytotoxicity assay. The patient whose serum was inhibitory to CFU-M at high concentrations was indeed found to have a complement-dependent serum IgG inhibitor that was cytotoxic to allogeneic and autologous marrow CFU-M but did not alter erythroid colony formation. These-studies suggest that AATP can be due to at least two mechanisms: either an intrinsic effect at the level of the CFU-M or a circulating cytotoxic autoantibody directed against the CFU-M.


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 619-626 ◽  
Author(s):  
AM Gewirtz ◽  
MK Sacchetti ◽  
R Bien ◽  
WE Barry

Abstract Acquired amegakaryocytic thrombocytopenic purpura (AATP) is a disorder of hematopoiesis characterized by severe thrombocytopenia due to a selective reduction or total absence of megakaryocytes in an otherwise normal-appearing bone marrow. Although the development of autoantibodies directed against cells in the megakaryocyte progenitor cell pool has been implicated in the pathogenesis of this disorder, cell-mediated suppression of megakaryocytopoiesis has not been described. Accordingly, we report two cases of AATP in which in vitro suppression of megakaryocyte colony formation by autologous ancillary marrow cells was demonstrable. Light-density bone marrow mononuclear cells (MNCs) obtained from both patients were either plated directly into plasma clot cultures, or after first being depleted by adherent monocytes (M phi) or T lymphocytes using standard methodologies. In some experiments, the depleted ancillary marrow cells were recovered for autologous co-culture studies with the MNCs from which they had been depleted. Megakaryocyte colony formation was detected in the cultures using an indirect immunofluorescence assay with a rabbit anti- human platelet glycoprotein antiserum. Removal of M phi (n = 6), or T lymphocytes (n = 4) from normal marrow MNCs had no apparent effect on colony formation. In contrast, depleting T lymphocytes from the MNCs of patient 1 significantly augmented megakaryocyte colony formation; a similar effect was observed after depleting M phi from the MNCs of patient 2. This observed augmentation in colony formation could be abrogated by autologous co-culture with the putative suppressor cell at effector cell/target cell ratios of 1:10 in the case of T lymphocytes or 1:5 in the case of M phi. Neither suppression nor stimulation of megakaryocyte colony formation was observed after culturing normal MNCs with autologous T cells (n = 4) or M phi (n = 3) at similar or greater ratios. We also observed inhibition of megakaryocyte colony formation after culturing normal MNCs in the presence of tissue culture medium conditioned by the M phi of patient 2. This effect was shown to be specific for megakaryocytes since this same conditioned medium had no significant effect on BFU-E and CFU-E-derived colony formation by autologous marrow mononuclear cells. These results suggest that: both T cells and M phi are capable of exerting a regulatory effect on the proliferation of human megakaryocyte progenitor cells (CFU-Meg); in the case of M phi, a soluble factor elaborated by these cells may be responsible for suppressing CFU-Meg growth; and aberrant ancillary cell- megakaryocyte progenitor cell interactions may lead to clinically significant disease.


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 619-626
Author(s):  
AM Gewirtz ◽  
MK Sacchetti ◽  
R Bien ◽  
WE Barry

Acquired amegakaryocytic thrombocytopenic purpura (AATP) is a disorder of hematopoiesis characterized by severe thrombocytopenia due to a selective reduction or total absence of megakaryocytes in an otherwise normal-appearing bone marrow. Although the development of autoantibodies directed against cells in the megakaryocyte progenitor cell pool has been implicated in the pathogenesis of this disorder, cell-mediated suppression of megakaryocytopoiesis has not been described. Accordingly, we report two cases of AATP in which in vitro suppression of megakaryocyte colony formation by autologous ancillary marrow cells was demonstrable. Light-density bone marrow mononuclear cells (MNCs) obtained from both patients were either plated directly into plasma clot cultures, or after first being depleted by adherent monocytes (M phi) or T lymphocytes using standard methodologies. In some experiments, the depleted ancillary marrow cells were recovered for autologous co-culture studies with the MNCs from which they had been depleted. Megakaryocyte colony formation was detected in the cultures using an indirect immunofluorescence assay with a rabbit anti- human platelet glycoprotein antiserum. Removal of M phi (n = 6), or T lymphocytes (n = 4) from normal marrow MNCs had no apparent effect on colony formation. In contrast, depleting T lymphocytes from the MNCs of patient 1 significantly augmented megakaryocyte colony formation; a similar effect was observed after depleting M phi from the MNCs of patient 2. This observed augmentation in colony formation could be abrogated by autologous co-culture with the putative suppressor cell at effector cell/target cell ratios of 1:10 in the case of T lymphocytes or 1:5 in the case of M phi. Neither suppression nor stimulation of megakaryocyte colony formation was observed after culturing normal MNCs with autologous T cells (n = 4) or M phi (n = 3) at similar or greater ratios. We also observed inhibition of megakaryocyte colony formation after culturing normal MNCs in the presence of tissue culture medium conditioned by the M phi of patient 2. This effect was shown to be specific for megakaryocytes since this same conditioned medium had no significant effect on BFU-E and CFU-E-derived colony formation by autologous marrow mononuclear cells. These results suggest that: both T cells and M phi are capable of exerting a regulatory effect on the proliferation of human megakaryocyte progenitor cells (CFU-Meg); in the case of M phi, a soluble factor elaborated by these cells may be responsible for suppressing CFU-Meg growth; and aberrant ancillary cell- megakaryocyte progenitor cell interactions may lead to clinically significant disease.


Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 277-286 ◽  
Author(s):  
EM Mazur ◽  
R Hoffman ◽  
J Chasis ◽  
S Marchesi ◽  
E Bruno

The development of a satisfactory in vitro assay system for human megakaryocyte colony forming progenitor cells has been delayed by the lack of a suitable marker for cells of human megakaryocyte lineage. For this purpose we raised an antiserum directed against a purified human platelet glycoprotein preparation. In conjunction with indirect immunofluorescent staining of human bone marrow, this antiserum labeled only platelets, megakaryocytes, and an infrequent population of small mononuclear cells. These small mononuclear cells, not otherwise identifiable as members of the megakaryocyte series, constituted 22.9% of the total fluorescein positive nucleated bone marrow cells. This antiserum was also used to label colonies cultured from human peripheral blood mononuclear cells using a modified plasma clot technique. A mean of 123 fluorescein-labeled colonies were cloned per 10(6) mononuclear cells cultured. Granulocyte-macrophage and erythroid burst colonies did not label using this method. No augmentation of colony numbers was found with varying concentrations of erythropoietin, human embryonic kidney cell conditioned media (a source of thrombopoietin), or media conditioned by a human T lymphoblast cell line (a source of both colony stimulating and burst promoting activities). Immunofluorescent labeling for platelet glycoproteins is a convenient phenotypic marker for cells of human megakaryocyte lineage useful in the study of in vitro human megakaryocytopoiesis.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1997-2004 ◽  
Author(s):  
A Srivastava ◽  
E Bruno ◽  
R Briddell ◽  
R Cooper ◽  
C Srivastava ◽  
...  

Abstract Parvovirus B19 infection leads to transient aplastic crises in individuals with chronic hemolytic anemias or immunodeficiency states. An additional unexplained sequela of B19 infection is thrombocytopenia. Because B19 is known to have a remarkable tropism for human erythropoietic elements, and is not known to replicate in nonerythroid cells, the etiology of this thrombocytopenia is uncertain. We sought to define the pathobiology of B19-associated thrombocytopenia by examining the role of B19 on in vitro megakaryocytopoiesis. B19 infection of normal human bone marrow cells significantly suppressed megakaryocyte (MK) colony formation compared with mock-infected cells. No such inhibition was observed with a nonpathogenic human parvovirus, the adeno-associated virus 2 (AAV). The B19-MK cell interaction was also studied at the molecular level. Whereas low-density bone marrow cells containing erythroid precursor cells supported B19 DNA replication, no viral DNA replication was observed in B19-infected MK-enriched fractions as determined by the presence of viral DNA replicative intermediates on Southern blots. However, analysis of total cytoplasmic RNA isolated from B19-infected MK fractions showed a low-level expression of the B19 genome as detected by quantitative RNA dot blots as well as by Northern analysis. Furthermore, a frame-shift mutation in a recombinant AAV-B19 hybrid genome segment that encodes the viral nonstructural (NS1) protein significantly reduced the observed inhibition of MK colony formation. These studies indicate tissue- tropism of B19 beyond the erythroid progenitor cell, and lend support to the hypothesis that B19 genome expression may be toxic to cell populations that are nonpermissive for viral DNA replication.


1988 ◽  
Vol 188 (6) ◽  
pp. 405-409 ◽  
Author(s):  
N. Ohhara ◽  
S. Okamura ◽  
S. Hayashi ◽  
T. Otsuka ◽  
Y. Niho

Blood ◽  
1986 ◽  
Vol 67 (4) ◽  
pp. 1063-1069 ◽  
Author(s):  
Y Lunardi-Iskandar ◽  
V Georgoulias ◽  
W Rozenbaum ◽  
D Klatzmann ◽  
MC Coll ◽  
...  

Abstract Patients with acquired immunodeficiency syndrome (AIDS) present impaired colony growth and in vitro differentiation capacity of peripheral blood and bone marrow T colony-forming cells (T-CFC). We show that peripheral blood, bone marrow, and lymph node T-CFC from patients with persistent lymphadenopathy syndrome (LAS), a syndrome that can precede AIDS, displayed similar abnormalities. Indeed, peripheral blood T-CFC generated a low number of colonies in seven out of 12 patients, and almost no colonies were obtained from bone marrow cells of all patients. The simultaneous study of T-CFC from peripheral blood and lymph node mononuclear cells seems to provide a reliable indicator for the risk of developing AIDS. The six patients who developed AIDS displayed extremely low numbers of peripheral blood T- CFC (13 +/- 17 colonies per 5 X 10(4) cells), and in two of them, no colonies could be obtained from lymph node T-CFC. The remaining patients who had not developed AIDS displayed a higher number of peripheral blood T-CFC (141 +/- 113 per 5 X 10(4) cells) and lymph node T-CFC, which, in addition, preserved their clonogenic capacity. In some patients, peripheral blood and lymph node, but not bone marrow, T-CFC were capable of generating colonies in the absence of added growth factors or mitogens, whereas in others, colony formation was obtained with purified interleukin 2 (IL 2) alone. Both spontaneous and IL 2- induced colony formation was abrogated by a monoclonal antibody against the IL 2 receptor. Taken together, these findings suggest that at least some T-CFC expressed IL 2 receptors. Colonies generated either in the presence or in the absence of added growth factors were composed of T4+, T6+, and T8+ cells, indicating impaired in vitro T-CFC differentiation. These findings indicate that a dramatic quantitative and qualitative impairment of the proliferation and differentiation of peripheral blood and lymph node T-CFC precedes the clinical evolution from LAS to AIDS.


2010 ◽  
Vol 31 (3) ◽  
pp. 855-867 ◽  
Author(s):  
Akihiko Taguchi ◽  
Pengxiang Zhu ◽  
Fang Cao ◽  
Akie Kikuchi-Taura ◽  
Yukiko Kasahara ◽  
...  

Circulating bone marrow-derived immature cells, including endothelial progenitor cells, have been implicated in homeostasis of the microvasculature. Decreased levels of circulating endothelial progenitor cells, associated with aging and/or cardiovascular risk factors, correlate with poor clinical outcomes in a range of cardiovascular diseases. Herein, we transplanted bone marrow cells from young stroke-prone spontaneously hypertensive rats (SHR-SP) into aged SHR-SP, the latter not exposed to radiation or chemotherapy. Analysis of recipient peripheral blood 28 days after transplantation revealed that 5% of circulating blood cells were of donor origin. Cerebral infarction was induced on day 30 posttransplantation. Animals transplanted with bone marrow from young SHR-SP displayed an increase in density of the microvasculature in the periinfarction zone, reduced ischemic brain damage and improved neurologic function. In vitro analysis revealed enhanced activation of endothelial nitric oxide synthase and reduced activation p38 microtubule-associated protein (MAP) kinase, the latter associated with endothelial apoptosis, in cultures exposed to bone marrow-derived mononuclear cells from young animals versus cells from aged counterparts. Our findings indicate that partial rejuvenation of bone marrow from aged rats with cells from young animals enhances the response to ischemic injury, potentially at the level of endothelial/vascular activation, providing insight into a novel approach ameliorate chronic vascular diseases.


1989 ◽  
Vol 170 (2) ◽  
pp. 577-582 ◽  
Author(s):  
J H Jansen ◽  
G J Wientjens ◽  
W E Fibbe ◽  
R Willemze ◽  
H C Kluin-Nelemans

We investigated the effects of human rIL-4 on in vitro hematopoiesis. A profound inhibition of macrophage colony formation by IL-4 was observed, whereas colony growth of other lineages was not affected. Inhibition of macrophage colony growth was not restricted to GM-CSF-induced colony growth but was also present in cultures stimulated with M-CSF. This inhibition was not only observed in cultures of light density bone marrow cells, but also in cultures of monocyte- and T lymphocyte-depleted bone marrow cells. Since a similar inhibition was observed in cultures of CD34+HLA-DR+-enriched bone marrow cells, a direct action of IL-4 on monocyte-committed progenitor cells is suggested.


Sign in / Sign up

Export Citation Format

Share Document