scholarly journals Delta +-thalassemia in Sardinia

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 341-345 ◽  
Author(s):  
M Pirastu ◽  
R Galanello ◽  
MA Melis ◽  
C Brancati ◽  
A Tagarelli ◽  
...  

Abstract We have defined a new type of delta-thalassemia in which beta-globin chain synthesis is incompletely suppressed. Homozygotes have unusually low HbA2 levels, and double heterozygosity for this delta-thalassemia gene and beta-thalassemia normalizes the HbA2 level. The delta- thalassemia occurs on a chromosome that is identifiable using polymorphic restriction endonuclease sites. We call this condition delta +-thalassemia, to distinguish it from the previously described delta 0-thalassemia syndromes in which no delta-globin chain synthesis occurs.

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 341-345
Author(s):  
M Pirastu ◽  
R Galanello ◽  
MA Melis ◽  
C Brancati ◽  
A Tagarelli ◽  
...  

We have defined a new type of delta-thalassemia in which beta-globin chain synthesis is incompletely suppressed. Homozygotes have unusually low HbA2 levels, and double heterozygosity for this delta-thalassemia gene and beta-thalassemia normalizes the HbA2 level. The delta- thalassemia occurs on a chromosome that is identifiable using polymorphic restriction endonuclease sites. We call this condition delta +-thalassemia, to distinguish it from the previously described delta 0-thalassemia syndromes in which no delta-globin chain synthesis occurs.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Jianhong Xie ◽  
Yuqiu Zhou ◽  
Qizhi Xiao ◽  
Ruoting Long ◽  
Lianxiang Li ◽  
...  

Beta thalassemia is a hereditary disorder resulted from mutations in the β globin gene leading to alpha/beta imbalance, ineffective erythropoiesis, and chronic anemia. Three types have been defined, based on the degree of reduced beta-globin chain synthesis and clinical phenotype: major, intermedia and minor (heterozygote carrier state). Beta thalassemia intermedia is characterized by heterogeneity for the wide clinical spectrum of various genotypes and a wide range of presentations. The genotypes of beta thalassemia intermedia are much complicated referring to β+/β+,β+/β0, Hb E/β0, β0/β0 compounding alpha thalassemia and so on. In this present case, we reported a rare beta thalassemia intermedia genotype of double heterozygosity for poly A (A>G) and CD17(A>T) indicated of β+/β0 in a Chinese family.


Blood ◽  
1972 ◽  
Vol 40 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Mordechai Shchory ◽  
Bracha Ramot

Abstract α, β, and γ globin chain synthesis in bone marrow and peripheral blood reticulocytes were studied in two patients with thalassemia major, two with thalassemia intermedia, one with thalassemia minor, one with Hb H disease, and one with homozygous βδ-thalassemia. Nine nonthalassemic patients served as controls. In thalassemia major, a marked imbalance of α- to β-chain synthesis was found in the bone marrow as well as in reticulocytes. The imbalance, however, was slightly more evident in the latter. In the patients with thalassemia intermedia and minor the α- to β-globin chain ratios in the reticulocytes were of the same order of magnitude, despite the marked clinical differences between thalassemia intermedia and minor. A balanced synthesis was found in the bone marrow of the patient with thalassemia minor. The bone marrow globin synthesis in thalassemia intermedia was not studied. Contrary to that in Hb H disease and βδ-thalassemia, the imbalance was more apparent in the bone marrow. In the latter, no evidence for imbalance was detected in the reticulocytes. These results point out the need for further studies on globin chain synthesis in the bone marrow and reticulocytes of patients With the various thalassemia syndromes and the effect of the free globin chain pool on those results.


Blood ◽  
1983 ◽  
Vol 62 (5) ◽  
pp. 1035-1040 ◽  
Author(s):  
R Galanello ◽  
R Ruggeri ◽  
E Paglietti ◽  
M Addis ◽  
MA Melis ◽  
...  

Abstract In this article we report a Sardinian family, in which a beta- thalassemia gene and a triple alpha-globin loci, counterpart of the rightward deletion type alpha-thalassemia-2, were segregating. The analysis of the genotype-phenotype correlations in the different family members allowed us to give an outline of the manifestations associated with different genotype combinations. The heterozygote for the triple alpha-loci showed no consistent abnormal clinical or hematologic characteristics and presented balanced alpha/beta-globin chain synthesis. In the homozygous state for this lesion, the only phenotypic expression was a slightly imbalanced globin chain synthesis. The combination of heterozygous beta-thalassemia with the heterozygous state for the triple alpha-globin loci produced no clinical manifestations and showed a hematologic phenotype indistinguishable from that of heterozygous beta-thalassemia. On the other hand, the combination of the homozygous state for the triple alpha-globin gene loci and the heterozygous state for beta-thalassemia produced a clinical picture of thalassemia intermedia with a very mild clinical course, minor increase of fetal hemoglobin (HbF) levels, and a pronounced imbalance of globin chain synthesis.


Blood ◽  
1976 ◽  
Vol 47 (1) ◽  
pp. 113-120 ◽  
Author(s):  
RF Rieder

Abstract A 23-yr-old man of Greek-Italian ancestry with mild anemia was found to be heterozygous for HbD (Punjab) beta121 glu leads to gin and beta- thalassemia. HbA was not detected upon electrophoresis of the subject's hemolysate, and no synthesis of betaA globin was demonstrated after incubation of peripheral blood or bone marrow with 3H-leucine. The thalassemia gene was thus of the betao variety. The betaD/alpha synthesis ratios were almost equally unbalanced in the blood and bone marrow: 0.53 and 0.61, respectively. The mother of the propositus had beta-thalassemia trait. In peripheral blood the betaA/alpha synthesis ratio was 0.38. The mutant betaD gene thus appeared potentially capable of directing the synthesis of globin chains as efficiently as a normal betaA gene. The mildness of the HbD-betao-thalassemia syndrome appeared to be due to the maintenance of a relatively high total beta/alpha synthesis ratio in the presence of a physiologically neutral structural mutation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2131-2131
Author(s):  
Ki Soon Kim ◽  
Colleen Byrnes ◽  
Y. Terry Lee ◽  
Jaira F. de Vasconcellos ◽  
Seung-Jae Noh ◽  
...  

Abstract Abstract 2131 Apoptotic cell death is a central feature of beta-thalassemia and other anemias caused by ineffective erythropoiesis. In this study, markers of apoptosis were examined using an ex vivo model of human beta-thalassemia to explore the cause(s) and timing of erythroblast cell death. Beta-globin gene and protein expression were knocked down by lentiviral transduction of beta-globin shRNA (beta-KD) in adult human CD34+ cells. Beta-globin mRNA (Control=4.0E+07 ± 1.4E+06 copies/ng, vs. beta-KD=2.5E+06 ± 1.6E+06 copies/ng, p=0.014) and protein were reduced in beta-KD cells by 90% compared to controls while alpha globin expression was maintained. The effects of imbalanced globin chain synthesis were therefore studied according to the stage of erythroblast maturation. Erythroid progenitor cell commitment and proliferation occur over the first two weeks in culture. During the third week of culture (days 14–21), the proerythroblasts undergo terminal differentiation with the characteristic loss of CD71 from the cell surface. Prior to culture day 14, phenotypic analyses demonstrated low levels of apoptosis in beta-KD and control cultures. On culture day 14, a small but significant increase in active caspase 3 was detected in the beta-KD cells compared to controls (beta-KD=4.0±1.0%, Control=0.7±0.3%, p=0.02) suggesting that apoptosis was initiated during the early stages of terminal maturation. Increases in annexin V staining did not achieve statistical significance on day 14 beta-KD cells (beta-KD=13.1±3.9%, Control=7.6±2.2%, p=0.16). By culture day 18, when orthochromic normoblasts are the most prevalent population in control cultures, a large population of apoptotic cells was detected in the beta-KD. The beta-KD erythroblasts demonstrated further increases in active caspase 3 (beta-KD=11.4±2.2% vs. Control=1.1±0.1%, p=0.014), as well as significant increases in surface annexin V (beta-KD=75.8±3.3%, vs. Control=35.9±12.7%, p=0.024). Western analysis of culture day 18 beta-KD membranes demonstrated a marked increase in alpha-chains compared with culture day 14. Since cleaved caspase 3 was increased in beta-KD cells near the beginning of their terminal maturation and prior to the accumulation of alpha chains in the cell membranes, other triggers of apoptosis were investigated. Mitochondrial superoxide is a reactive species that can be generated by iron or other mitochondrial toxins. Increased levels of mitochondrial superoxide cause apoptosis. The cultured erythroblasts were stained with MitoSOX, a cell-permeable dye that specifically detects mitochondrial superoxide. On culture day 11, mitochondrial superoxide was barely detectable in beta-KD and control cell populations (beta-KD=5.2±3.3% vs. Control=3.6±2.9%, p=0.051). Thereafter, the superoxide detection was increased significantly in beta-KD cells on culture day 14 (beta-KD=54.2±6.7% vs. Control=9.1±2.9%, p=0.003), and culture day 18 (beta-KD=81.1±3.2% vs. Control=34.6±3.8%, p=0.007). Oxidation of cellular membranes by hemichromes and free alpha chains damages thalassemic erythrocytes and their precursors. These data suggest that imbalanced globin chain synthesis also triggers apoptosis during the early stages of terminal differentiation by increasing superoxide formation in the mitochondria. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1983 ◽  
Vol 62 (5) ◽  
pp. 1035-1040
Author(s):  
R Galanello ◽  
R Ruggeri ◽  
E Paglietti ◽  
M Addis ◽  
MA Melis ◽  
...  

In this article we report a Sardinian family, in which a beta- thalassemia gene and a triple alpha-globin loci, counterpart of the rightward deletion type alpha-thalassemia-2, were segregating. The analysis of the genotype-phenotype correlations in the different family members allowed us to give an outline of the manifestations associated with different genotype combinations. The heterozygote for the triple alpha-loci showed no consistent abnormal clinical or hematologic characteristics and presented balanced alpha/beta-globin chain synthesis. In the homozygous state for this lesion, the only phenotypic expression was a slightly imbalanced globin chain synthesis. The combination of heterozygous beta-thalassemia with the heterozygous state for the triple alpha-globin loci produced no clinical manifestations and showed a hematologic phenotype indistinguishable from that of heterozygous beta-thalassemia. On the other hand, the combination of the homozygous state for the triple alpha-globin gene loci and the heterozygous state for beta-thalassemia produced a clinical picture of thalassemia intermedia with a very mild clinical course, minor increase of fetal hemoglobin (HbF) levels, and a pronounced imbalance of globin chain synthesis.


Blood ◽  
1994 ◽  
Vol 84 (3) ◽  
pp. 928-933 ◽  
Author(s):  
JL Villeval ◽  
P Rouyer-Fessard ◽  
N Blumenfeld ◽  
A Henri ◽  
W Vainchenker ◽  
...  

Abstract Repeated injections of large doses of erythropoietin (Epo) have been shown to be of benefit in the treatment of murine and human beta- thalassemia. To determine whether Epo gene therapy could replace this treatment for long-term periods, lethally irradiated beta-thalassemic (Hbbd3th haplotype) and normal DBA/2J (Hbbd haplotype) mice were grafted with syngeneic bone marrow cells infected with a retroviral vector carrying the Epo cDNA. In normal mice, dysregulated Epo production induced elevated serum Epo levels (176 +/- 68 mU/mL), high hematocrit levels (73% +/- 8%), and elevated beta-minor globin chain synthesis. In contrast, in thalassemic mice, moderate increases in the hematocrit levels (from 33% +/- 1% to 43% +/- 9%), associated with limited increases in the initially elevated Epo levels (from 83 +/- 22 to 190 +/- 230 mU/mL), were recorded 2 months after transplantation. In mice in which the hematocrit increased most, from 33% +/- 1% before transplantation to 49% +/- 10%, the retroviral Epo gene expression induced a striking improvement of the beta-thalassemic syndrome. These mice exhibited normal or near-normal beta/alpha-globin chain synthesis ratios, induced by the activation of the beta-minor chain. This led to the elimination of the high amounts of unpaired alpha chains in erythrocytes and finally reduced the reticulocyte count despite the permanent Epo stimulation. These results show that efficient Epo gene expression corrects the erythrocyte phenotype of the mouse beta- thalassemic syndrome. However, the incidence of lethal polycythemia or of transient improvements indicates that the present strategy is only the first step toward such indirect gene therapy.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 961-967 ◽  
Author(s):  
SL Thein ◽  
WG Wood ◽  
SN Wickramasinghe ◽  
MC Galvin

Abstract An inherited hypochromic microcytic anemia transmitted in an autosomal manner has been observed in three generations of an English family. Affected members had the hallmarks of heterozygous beta-thalassemia, ie, elevated levels of hemoglobin A2 and imbalanced globin chain synthesis. However, despite extensive sequence analysis, no mutations could be found in or around the beta-globin genes of either the propositus or two other affected members from two different generations. Linkage analysis using restriction fragment length polymorphisms in the beta-globin gene cluster clearly showed that the gene responsible for the beta-thalassemia phenotype segregates independently of the beta-gene complex. Therefore, this condition represents a novel form of the disease.


Blood ◽  
1976 ◽  
Vol 47 (1) ◽  
pp. 113-120
Author(s):  
RF Rieder

A 23-yr-old man of Greek-Italian ancestry with mild anemia was found to be heterozygous for HbD (Punjab) beta121 glu leads to gin and beta- thalassemia. HbA was not detected upon electrophoresis of the subject's hemolysate, and no synthesis of betaA globin was demonstrated after incubation of peripheral blood or bone marrow with 3H-leucine. The thalassemia gene was thus of the betao variety. The betaD/alpha synthesis ratios were almost equally unbalanced in the blood and bone marrow: 0.53 and 0.61, respectively. The mother of the propositus had beta-thalassemia trait. In peripheral blood the betaA/alpha synthesis ratio was 0.38. The mutant betaD gene thus appeared potentially capable of directing the synthesis of globin chains as efficiently as a normal betaA gene. The mildness of the HbD-betao-thalassemia syndrome appeared to be due to the maintenance of a relatively high total beta/alpha synthesis ratio in the presence of a physiologically neutral structural mutation.


Sign in / Sign up

Export Citation Format

Share Document