scholarly journals Regulated proliferation of primitive hematopoietic progenitor cells in long-term human marrow cultures

Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 1002-1005 ◽  
Author(s):  
J Cashman ◽  
AC Eaves ◽  
CJ Eaves

We have examined the cycling status of various classes of erythroid and granulopoietic progenitor populations maintained for many weeks in standard normal long-term human marrow cultures. These were initiated with a single inoculum of marrow aspirate and were routinely fed by weekly removal of half of the nonadherent cells and replacement of half of the growth medium. Progenitors of large erythroid colonies (more than eight erythroblast clusters) present in the nonadherent fraction and progenitors of small granulocyte/macrophage colonies (fewer than 500 cells) present in both the nonadherent and adherent fractions were found to be actively cycling at all times examined (28% to 63% kill following a 20-minute exposure to 20 microCi/mL of high specific activity 3H-thymidine). In contrast, progenitors of large granulocyte/macrophage colonies (more than 500 cells) and progenitors of large erythroid colonies (more than eight erythroblast clusters), present in the adherent layer, consistently alternated between a quiescent state at the time of each weekly medium change and a proliferating state two to three days later (0% to 13% kill and 21% to 49% kill, respectively). Additional experiments revealed that the activation of primitive progenitors in the adherent layer was not dependent on the addition of fresh glutamine or hydrocortisone, nor on the physical manipulations involved in changing the growth medium. These studies provide the first direct evidence that normal long-term human marrow cultures support the continued turnover of a variety of early hematopoietic progenitor cell types. Further, they indicate that the proliferative activity of the most primitive of these progenitors is regulated by stage-specific cell-cell interactions that are subject to manipulation.

Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 1002-1005 ◽  
Author(s):  
J Cashman ◽  
AC Eaves ◽  
CJ Eaves

Abstract We have examined the cycling status of various classes of erythroid and granulopoietic progenitor populations maintained for many weeks in standard normal long-term human marrow cultures. These were initiated with a single inoculum of marrow aspirate and were routinely fed by weekly removal of half of the nonadherent cells and replacement of half of the growth medium. Progenitors of large erythroid colonies (more than eight erythroblast clusters) present in the nonadherent fraction and progenitors of small granulocyte/macrophage colonies (fewer than 500 cells) present in both the nonadherent and adherent fractions were found to be actively cycling at all times examined (28% to 63% kill following a 20-minute exposure to 20 microCi/mL of high specific activity 3H-thymidine). In contrast, progenitors of large granulocyte/macrophage colonies (more than 500 cells) and progenitors of large erythroid colonies (more than eight erythroblast clusters), present in the adherent layer, consistently alternated between a quiescent state at the time of each weekly medium change and a proliferating state two to three days later (0% to 13% kill and 21% to 49% kill, respectively). Additional experiments revealed that the activation of primitive progenitors in the adherent layer was not dependent on the addition of fresh glutamine or hydrocortisone, nor on the physical manipulations involved in changing the growth medium. These studies provide the first direct evidence that normal long-term human marrow cultures support the continued turnover of a variety of early hematopoietic progenitor cell types. Further, they indicate that the proliferative activity of the most primitive of these progenitors is regulated by stage-specific cell-cell interactions that are subject to manipulation.


Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3025-3031 ◽  
Author(s):  
Fulu Liu ◽  
Jennifer Poursine-Laurent ◽  
Daniel C. Link

Abstract The mechanisms that regulate hematopoietic progenitor cell (HPC) mobilization from the bone marrow to blood have not yet been defined. HPC mobilization by granulocyte colony-stimulating factor (G-CSF), cyclophosphamide (CY), or interleukin-8 but not flt-3 ligand is markedly impaired in G-CSF receptor–deficient (G-CSFR–deficient) mice. G-CSFR is expressed on mature hematopoietic cells, HPCs, and stromal cells, which suggests that G-CSFR signals in one or more of these cell types was required for mobilization by these agents. To define the cell type(s) responsible for G-CSF–dependent mobilization, a series of chimeric mice were generated using bone marrow transplantation. Mobilization studies in these chimeras demonstrated that expression of the G-CSFR on transplantable hematopoietic cells but not stromal cells is required for CY- or G-CSF–induced mobilization. Moreover, in irradiated mice reconstituted with both wild type and G-CSFR–deficient bone marrow cells, treatment with CY or G-CSF resulted in the equal mobilization of both types of HPCs. This result held true for a broad spectrum of HPCs including colony-forming cells, CD34+lineage− and Sca+ lineage−cells, and long-term culture initiating cells. Collectively, these data provide the first definitive evidence that expression of the G-CSFR on HPCs is not required for their mobilization by G-CSF and suggest a model in which G-CSFR–dependent signals act in trans to mobilize HPCs from the bone marrow.


1996 ◽  
Vol 7 (17) ◽  
pp. 2089-2100 ◽  
Author(s):  
Ian D. Dubé ◽  
Steven Kruth ◽  
Anthony Abrams-Ogg ◽  
Suzanne Kamel-Reid ◽  
Carolyn Lutzko ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (10) ◽  
pp. 3025-3031 ◽  
Author(s):  
Fulu Liu ◽  
Jennifer Poursine-Laurent ◽  
Daniel C. Link

The mechanisms that regulate hematopoietic progenitor cell (HPC) mobilization from the bone marrow to blood have not yet been defined. HPC mobilization by granulocyte colony-stimulating factor (G-CSF), cyclophosphamide (CY), or interleukin-8 but not flt-3 ligand is markedly impaired in G-CSF receptor–deficient (G-CSFR–deficient) mice. G-CSFR is expressed on mature hematopoietic cells, HPCs, and stromal cells, which suggests that G-CSFR signals in one or more of these cell types was required for mobilization by these agents. To define the cell type(s) responsible for G-CSF–dependent mobilization, a series of chimeric mice were generated using bone marrow transplantation. Mobilization studies in these chimeras demonstrated that expression of the G-CSFR on transplantable hematopoietic cells but not stromal cells is required for CY- or G-CSF–induced mobilization. Moreover, in irradiated mice reconstituted with both wild type and G-CSFR–deficient bone marrow cells, treatment with CY or G-CSF resulted in the equal mobilization of both types of HPCs. This result held true for a broad spectrum of HPCs including colony-forming cells, CD34+lineage− and Sca+ lineage−cells, and long-term culture initiating cells. Collectively, these data provide the first definitive evidence that expression of the G-CSFR on HPCs is not required for their mobilization by G-CSF and suggest a model in which G-CSFR–dependent signals act in trans to mobilize HPCs from the bone marrow.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6198-6201 ◽  
Author(s):  
Mark H. Kaplan ◽  
Nicole L. Glosson ◽  
Gretta L. Stritesky ◽  
Norman Yeh ◽  
John Kinzfogl ◽  
...  

Abstract The contribution of specific cell types to the production of cytokines that regulate hematopoiesis is still not well defined. We have previously identified T cell–dependent regulation of hematopoietic progenitor cell (HPC) numbers and cycling. In this report, we demonstrated that HPC activity is decreased in mice with STAT3-deficient T cells, a phenotype that is not because of decreased expression of IL-17 or RORγt. STAT3 expression in T cells was required for IL-21 production by multiple T helper subsets, and neutralization of IL-21 resulted in decreased HPC activity identical to that in mice with STAT3-deficient T cells. Importantly, injection of IL-21 rescued HPC activity in mice with STAT3-deficient T cells. Thus, STAT3-dependent IL-21 production in T cells is required for HPC homeostasis.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4060-4066 ◽  
Author(s):  
Maria Fiammetta Romano ◽  
Annalisa Lamberti ◽  
Rita Bisogni ◽  
Corrado Garbi ◽  
Antonio M. Pagnano ◽  
...  

Abstract We investigated the involvement of NF-κB/Rel transcription factors that reportedly can inhibit apoptosis in various cell types in the antiapoptotic mechanism of the cytoprotectant amifostine. In the nontumorigenic murine myeloid progenitor 32D cells incubated with amifostine, we detected a reduction of the IκB cytoplasmic levels by Western blotting and a raising of nuclear NF-κB/Rel complexes by electrophoretic mobility shift assay. Amifostine inhibited by more than 30% the growth factor deprivation-induced apoptosis, whereas its effect failed when we blocked the NF-κB/Rel activity with an NF-κB/Rel-binding phosphorothioate decoy oligodeoxynucleotide. In human cord blood CD34+ cells, the NF-κB/Rel p65 subunit was detectable (using immunofluorescence analysis) mainly in the cytoplasm in the absence of amifostine, whereas its presence was appreciable in the nuclei of cells incubated with the cytoprotectant. In 4 CD34+ samples incubated for 3 days in cytokine-deficient conditions, cell apoptosis was reduced by more than 30% in the presence of amifostine (or amifostine plus a control oligo); the effect of amifostine was abolished in cultures with the decoy oligo. These findings indicate that the inhibition of hematopoietic progenitor cell apoptosis by amifostine requires the induction of NF-κB/Rel factors and that the latter can therefore exert an antiapoptotic activity in the hematopoietic progenitor cell compartment. Furthermore, the identification of this specific mechanism underlying the survival-promoting activity of amifostine lends support to the possible use of this agent in apoptosis-related pathologies, such as myelodysplasias.


2010 ◽  
Vol 130 (1-2) ◽  
pp. 32-35 ◽  
Author(s):  
Patricia Vegh ◽  
Jana Winckler ◽  
Fritz Melchers

Sign in / Sign up

Export Citation Format

Share Document