mobility shift assay
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 101)

H-INDEX

53
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Alessandro Dasti ◽  
Maria Carla Antonelli ◽  
Magdalena Arnal Segura ◽  
Alexandros Armaos ◽  
Sarah Bonnin ◽  
...  

The signal transduction and activation of RNA (STAR) family is composed of RNA-binding proteins (RBPs) that play a central role in mammalian development. Nonetheless, the functions and modes of action that STAR proteins have in lineage specification are still poorly understood. Here, we characterized the role of STAR proteins SAM68 and QUAKING (QKI) in pluripotency and differentiation by performing their depletion through CRISPR-Cas9 in mouse embryonic stem cells (mESCs). Combining RNA-sequencing, ribosome profiling and advanced computational predictions, we found that both SAM68 and QKI regulate the mESCs self-renewal and are indispensable for cardiomyocyte differentiation. At the molecular level, we discovered that SAM68 and QKI antagonistically control the expression of cardiogenic factors. Our calculations indicated that SAM68, unlike QKI, binds the cardiogenic-specific transcription factor Gata4 in a region spanning nucleotides 500 to 1000 of the mRNA corresponding to part of the 5' untranslated region and the first exon. We validated the predictions by electrophoretic mobility shift assay and RNA immunoprecipitation showing that SAM68 controls the translation of Gata4 during mESCs differentiation towards the cardiomyocyte lineage.


Nature ◽  
2022 ◽  
Author(s):  
Shikang Liang ◽  
Sherine E. Thomas ◽  
Amanda K. Chaplin ◽  
Steven W. Hardwick ◽  
Dimitri Y. Chirgadze ◽  
...  

AbstractThe DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5′-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


2021 ◽  
Author(s):  
Mei-Qin Zhuo ◽  
Jun Chen ◽  
Mei-Li Wu ◽  
Wen-biao Wang

Abstract In this study, the transcriptional regulation of PI3KC3 by three transcript factors (PPARγ, PPARα and STAT3) and the potential role of PI3KC3 in mediating lipid accumulation were determined in yellow catfish Pelteobagrus fulvidraco. The 5’-deletion assay, overexpression assay, site-mutation assay and electrophoretic mobility shift assay suggested that PPARα, PPARγ and STAT3 negatively regulated the promoter activity of pi3kc3. Moreover, the transcriptional inactivation of pi3kc3 was directly mediated by PPARα and PPARγ under fatty acid (FA) treatment. Using primary hepatocytes from yellow catfish, FA incubation significantly increased triacylglyceride (TG), NEFA content, the mRNA level of pparα, pparγ, stat3 and dnmt3b, the protein level of PPARα, PPARγ and STAT3, and the methylation level of pi3kc3, but significantly reduced the mRNA and protein level of PI3KC3. Our findings offer new insights into the mechanisms for transcriptional regulation of PI3KC3 and for PI3KC3-mediated lipid accumulation in fish.


Author(s):  
Zhijian Ke ◽  
Qian Zhu ◽  
Siyuan Gao ◽  
Mingliang Zhang ◽  
Mingli Jiang ◽  
...  

Previously, a LysR family transcriptional regulator McbG that activates the mcbBCDEF gene cluster involved in the upstream pathway (from carbaryl to salicylate) of carbaryl degradation in Pseudomonas sp. strain XWY-1 has been identified by us ( Appl. Environ. Microbiol. 2021, 87(9): e02970-20.). In this study, we identified McbH and McbN, which activate mcbIJKLM cluster (responsible for the midstream pathway, from salicylate to gentisate) and mcbOPQ cluster (responsible for the downstream pathway, from gentisate to pyruvate and fumarate), respectively. They both belong to the LysR family of transcriptional regulators. Gene disruption and complementation study reveal that McbH is essential for transcription of the mcbIJKLM cluster in response to salicylate and McbN is indispensable for the transcription of the mcbOPQ cluster in response to gentisate. The results of electrophoretic mobility shift assay (EMSA) and DNase I footprinting showed that McbH binds to the 52-bp motif in the mcbIJKLM promoter area and McbN binds to the 58-bp motif in the mcbOPQ promoter area. The key sequence of McbH binding to mcbIJKLM promoter is a 13-bp motif that conforms to the typical characteristics of LysR family. However, the 12-bp motif that is different from the typical characteristics of the LysR family regulator binding site sequence is identified as the key sequence for McbN to bind to the mcbOPQ promoter. This study reveals the regulatory mechanism for the midstream and downstream pathway of carbaryl degradation in strain XWY-1 and further enriches the members of the LysR transcription regulator family. IMPORTANCE: The enzyme-encoding genes involved in the complete degradation pathway of carbaryl in Pseudomonas sp. strain XWY-1 include mcbABCDEF , mcbIJKLM and mcbOPQ . Previous studies demonstrated that the mcbA gene responsible for hydrolysis of carbaryl to 1-naphthol is constitutively expressed and the transcription of mcbBCDEF was regulated by McbG. However, the transcription regulation mechanisms of mcbIJKLM and mcbOPQ have not been investigated yet. In this study, we identified two LysR-type transcriptional regulators, McbH and McbN, which activate the mcbIJKLM cluster responsible for the degradation of salicylate to gentisate and mcbOPQ cluster responsible for the degradation of gentisate to pyruvate and fumarate, respectively. The 13-bp motif is critical for McbH to bind to the promoter of mcbIJKLM , and 12-bp motif different from the typical characteristics of the LTTR binding sequence affects the binding of McbN to promoter. These findings help to expand the understanding of the regulatory mechanism of microbial degradation of carbaryl.


2021 ◽  
Vol 22 (24) ◽  
pp. 13306
Author(s):  
Damian M. Janecki ◽  
Agata Swiatkowska ◽  
Joanna Szpotkowska ◽  
Anna Urbanowicz ◽  
Martyna Kabacińska ◽  
...  

The p53 protein is one of the major transcriptional factors which guards cell homeostasis. Here, we showed that poly(C)-binding protein 2 (PCBP2) can bind directly to the 5′ terminus of p53 mRNA by means of electrophoretic mobility shift assay. Binding sites of PCBP2 within this region of p53 mRNA were mapped using Pb2+-induced cleavage and SAXS methods. Strikingly, the downregulation of PCBP2 in HCT116 cells resulted in a lower level of p53 protein under normal and stress conditions. Quantitative analysis of p53 mRNA in PCBP2-downregulated cells revealed a lower level of p53 mRNA under normal conditions suggesting the involvement of PCBP2 in p53 mRNA stabilisation. However, no significant change in p53 mRNA level was observed upon PCBP2 depletion under genotoxic stress. Moreover, a higher level of p53 protein in the presence of rapamycin or doxorubicin and the combination of both antibiotics was noticed in PCBP2-overexpressed cells compared to control cells. These observations indicate the potential involvement of PCBP2 in cap-independent translation of p53 mRNA especially occurring under stress conditions. It has been postulated that the PCBP2 protein is engaged in the enhancement of p53 mRNA stability, probably via interacting with its 3′ end. Our data show that under stress conditions PCBP2 also modulates p53 translation through binding to the 5′ terminus of p53 mRNA. Thus PCBP2 emerges as a double-function factor in the p53 expression.


Author(s):  
Leilei Xu ◽  
Zhenhua Feng ◽  
Zhicheng Dai ◽  
Wayne Y. W. Lee ◽  
Zhichong Wu ◽  
...  

Previous studies have shown that LBX1 is associated with adolescent idiopathic scoliosis (AIS) in multiple populations. For the first time, rs1322330 located in the putative promoter region of LBX1 was found significantly associated with AIS in the Chinese population [p = 6.08 × 10–14, odds ratio (OR) = 1.42, 95% confidence interval of 1.03–1.55]. Moreover, the luciferase assay and electrophoretic mobility shift assay supported that the allele A of rs1322330 could down-regulate the expression of LBX1 in the paraspinal muscles of AIS. In addition, silencing LBX1 in the myosatellite cells resulted in significantly inhibited cell viability and myotube formation, which supported an essential role of LBX1 in muscle development of AIS. To summarize, rs1322330 may be a novel functional SNP regulating the expression of LBX1, which was involved in the etiology of AIS possibly via regulation of myogenesis in the paraspinal muscles.


2021 ◽  
Vol 22 (21) ◽  
pp. 11867
Author(s):  
Krzysztof J. Pawlik ◽  
Mateusz Zelkowski ◽  
Mateusz Biernacki ◽  
Katarzyna Litwinska ◽  
Pawel Jaworski ◽  
...  

Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4—an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.


2021 ◽  
Author(s):  
Longyu Wang ◽  
Xiaochen Xie ◽  
Yang Liu ◽  
Wenqiang Li ◽  
Bin Lv ◽  
...  

ABSTRACTArgonaute proteins are widespread in prokaryotes and eukaryotes. Most prokaryotic Argonaute proteins (pAgos) use 5’P-gDNA to target complementary DNA. However, more and more studies on the properties of pAgos make their functions more diversified. Previously reported pAgos only possess several forms of high activity in all eight cleavage patterns, which limits their practical applications. Here, we described a unique pAgo from Marinitoga hydrogenitolerans (MhAgo) with eight cleavage activities. MhAgo can utilize all four types of guides (5’OH-gDNA, 5’P-gDNA, 5’OH-gRNA, and 5’P-gRNA) for ssDNA and RNA cleavage. Further studies demonstrated that MhAgo had high activities with 16-21 nt guides and no obvious preferences for the 5’-end nucleotides of 5’OH-guides. Unexpectedly, MhAgo had different preferences for the 5’-end nucleotides of 5’P-guides depending on the types of targets. Although the specificity of MhAgo was related to the types of guides, single mismatches in the central and 3’-supplementary regions of guides greatly reduced the cleavage efficiency. Additionally, the electrophoretic mobility shift assay (EMSA) demonstrated MhAgo had the weakest affinity for 5’P-gRNA:tRNA duplex, which was consistent with its cleavage efficiency. In conclusion, MhAgo is highly active under a wide range of conditions and can be used for programmable endonucleolytic cleavage of both ssDNA and RNA substrates. The abundant biochemical characteristics of MhAgo broaden our understanding of pAgos and expand the potential application in nucleic acids manipulations.


2021 ◽  
Vol 7 (10) ◽  
pp. 840
Author(s):  
Dongxu Song ◽  
Yueqing Cao ◽  
Yuxian Xia

The growth pattern of filamentous fungi can switch between hyphal radial polar growth and non-polar yeast-like cell growth depending on the environmental conditions. Asexual conidiation after radial polar growth is called normal conidiation (NC), while yeast-like cell growth is called microcycle conidiation (MC). Previous research found that the disruption of MaH1 in Metarhizium acridum led to a conidiation shift from NC to MC. However, the regulation mechanism is not clear. Here, we found MaMsn2, an Msn2 homologous gene in M. acridum, was greatly downregulated when MaH1 was disrupted (ΔMaH1). Loss of MaMsn2 also caused a conidiation shift from NC to MC on a nutrient-rich medium. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) showed that MaH1 could bind to the promoter region of the MaMsn2 gene. Disrupting the interaction between MaH1 and the promoter region of MaMsn2 significantly downregulated the transcription level of MaMsn2, and the overexpression of MaMsn2 in ΔMaH1 could restore NC from MC of ΔMaH1. Our findings demonstrated that MaMsn2 played a role in maintaining the NC pattern directly under the control of MaH1, which revealed the molecular mechanisms that regulated the conidiation pattern shift in filamentous fungi for the first time.


Sign in / Sign up

Export Citation Format

Share Document