scholarly journals Differential protection of normal and malignant human myeloid progenitors (CFU-GM) from Ara-C toxicity using cycloheximide

Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 830-834 ◽  
Author(s):  
CA Slapak ◽  
RL Fine ◽  
CM Richman

Abstract Cycloheximide, a reversible protein synthesis inhibitor, is thought to block DNA replication in normal cells by preventing synthesis of a labile protein. In animal systems, cycloheximide protects normal cells from cytotoxic S-phase specific agents, such as cytosine arabinoside (Ara-C). Malignant cells appear not to be susceptible to cycloheximide- induced cycle arrest and, subsequently, may not be protected from Ara-C cytotoxicity. The effect of cycloheximide on granulocyte/macrophage progenitors (CFU-GM) after in vitro Ara-C exposure was examined using normal human bone marrow, malignant progenitors from patients with chronic myelogenous leukemia (CML), and clonogenic cells from the human acute nonlymphocytic leukemia cell lines HL-60 and KG-1. Mononuclear or clonogenic cells were incubated for one hour with cycloheximide, followed by the addition, for three or 17 hours, of Ara-C before being plated in a methylcellulose culture system. CFU-GM survival was significantly increase if normal cells were treated with cycloheximide before Ara-C exposure. Similar cycloheximide pretreatment of CML progenitors and clonogenic HL-60 and KG-1 cells failed to protect CFU- GM from Ara-C-induced cytotoxicity.

Blood ◽  
1985 ◽  
Vol 66 (4) ◽  
pp. 830-834
Author(s):  
CA Slapak ◽  
RL Fine ◽  
CM Richman

Cycloheximide, a reversible protein synthesis inhibitor, is thought to block DNA replication in normal cells by preventing synthesis of a labile protein. In animal systems, cycloheximide protects normal cells from cytotoxic S-phase specific agents, such as cytosine arabinoside (Ara-C). Malignant cells appear not to be susceptible to cycloheximide- induced cycle arrest and, subsequently, may not be protected from Ara-C cytotoxicity. The effect of cycloheximide on granulocyte/macrophage progenitors (CFU-GM) after in vitro Ara-C exposure was examined using normal human bone marrow, malignant progenitors from patients with chronic myelogenous leukemia (CML), and clonogenic cells from the human acute nonlymphocytic leukemia cell lines HL-60 and KG-1. Mononuclear or clonogenic cells were incubated for one hour with cycloheximide, followed by the addition, for three or 17 hours, of Ara-C before being plated in a methylcellulose culture system. CFU-GM survival was significantly increase if normal cells were treated with cycloheximide before Ara-C exposure. Similar cycloheximide pretreatment of CML progenitors and clonogenic HL-60 and KG-1 cells failed to protect CFU- GM from Ara-C-induced cytotoxicity.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Lulu Zhang ◽  
Nan Wei ◽  
Guoying Guan ◽  
Tao Song ◽  
Yingying Xu ◽  
...  

Abstract Vanadium is an ultratrace element. The transition metal vanadium, widely exists in the environment and exhibits various biological and physiological effects in the human body, yet with no presently known specific physiological function in mammals. Sodium orthovanadate (SOV) is a kind of vanadium compound. SOV has shown promising antineoplastic activity in several human cancers. But the effects of SOV on acute promyelocytic leukemia (APL) are still unknown. In the present study, for the first time, we found that SOV could inhibit proliferation, induce G2/M cell cycle arrest and apoptosis, and could inhibit autophagy of acute leukemia cell lines in vitro. Thus, our findings suggest that SOV could effectively suppress the growth of acute leukemia HL60 cells and HL60/A cells through the regulations of proliferation, cell cycle, apoptosis and autophagy, and thus may act as a potential therapeutic agent in APL treatment.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 721-726
Author(s):  
M Beran ◽  
BS Andersson ◽  
P Kelleher ◽  
K Whalen ◽  
K McCredie ◽  
...  

In vitro characteristics of response to recombinant tumor necrosis factors alpha (rTNF-alpha) and beta (rTNF-beta) were studied in six human myelogenous leukemia cell lines. Heterogeneity of the response to rTNF was observed, and one line (K562) was resistant. No enhancement of cell growth was noted in any cell line. The dose-response curves for rTNF-alpha were characteristically sigmoid, the maximum inhibitory effect occurring between 25 and 200 ng/mL. Nonresponsiveness within this range indicated resistance that could not be overcome, even with very high doses of rTNF alpha. A similar response of sensitive and resistant lines occurred after exposure to rTNF-beta. The clonogenic cells were more sensitive than the overall population to the action of rTNF alpha, and prolonged exposure was necessary for manifestation of the effect. Concomitant exposure to recombinant interferon-alpha (rIFN- alpha) increased the response of two cell lines to rTNF-alpha, but no clear synergistic action could be demonstrated. The addition of rIFN- gamma was without effect. Variations in the rTNF-alpha-induced proliferative response could not be explained by differences in the number of binding sites per cell or their affinity for rTNF-alpha. That the clonogenic cells showed a higher sensitivity than the whole population might indicate a preferential effect on more primitive, actively proliferating cells with high growth potential.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3962-3962
Author(s):  
Laura M Bystrom ◽  
Hongliang Zong ◽  
Hsiao-Ting Hsu ◽  
Neng Yang ◽  
Noa Greenberg ◽  
...  

Abstract Acute myelogenous leukemia (AML) is often a fatal disease where after strong induction therapy most patients relapse and die. AML originates and is maintained by leukemia stem cells (LSCs). Failure to eliminate LSCs by chemotherapy is likely to result in disease relapse. Therefore, it is a priority to identify new therapies that eliminate blasts while ablating LSCs and preventing a relapse. We have found that a unique class of compounds in cranberries (Vaccinium macrocarponAit.), known as A-type proanthocyanidins (A-PACs), were effective against several leukemia cell lines and primary AML samples in vitro. A-PACs consist of monomeric epicatechin units attached to one another by a carbon-carbon bond and a distinctive ether bond that differentiates these compounds from other proanthocyanidins found in nature. Moreover, A-PACs possess ortho-hydroxyl phenolic groups that have the potential to bind to iron and alter redox status. Preliminary work showed that pre-treatment with antioxidants or holo-transferrin (iron-saturated transferrin) partially protected AML cells from A-PAC induced cell death (p<0.01). A-PACs were also found to selectively ablate leukemia stem and progenitor cells, with minimal effects on normal hematopoetic stem cells. Furthermore, AML engraftment of cells treated ex vivo with 62.5 µg/ml A-PACs was decreased (90.6%, n=3, p<0.001), while normal CD34+ cells retained engraftment capability in immunodeficient mice. It was also found that a fraction of A-PACs of up to 7 degree of polymerization was more effective than individual A-PACs. This information prompted us to investigate the in vivo anti-leukemia effects of A-PACs in xenotransplanted mice with primary AML samples, and to further investigate the mechanisms associated with these compounds. Primary AML cells were injected in sub-lethally irradiated NOD/SCID mice. Four weeks after injections, when human leukemia cells have engrafted, intraperitoneal injections of cytarabine (AraC) at 60 mg/kg were given to the mice for 1 week everyday or A-PACs (100 mg/kg dose every 3 days for A-PACs) and vehicle control (1% DMSO in PBS every 3 days) were injected for 2.5 weeks. Mice were sacrificed and leukemia engraftment evaluated using anti-human CD45 and CD33. Moreover, primary cells treated with A-PACs were assessed for effects on iron metabolism, ROS, and survival pathways either by gene expression analysis, flow cytometry or mass spectrometry. Administration of A-PACs to NOD-SCID mice bearing AML tumors reduced tumor burden. Mice that were treated with the vehicle control had engraftment of AML primary cells equivalent to 16.1% (95% CI: -6.0, 38.37; n=4), whereas the mice treated with the A-PACs and AraC showed a level of engraftment of 4.9% (95% CI: 2, 8; n=5) and 5.8% (95% CI: -1.1, 12.7; n=5), respectively. No significant changes in hemoglobin or weight were found between the different treatment groups. Moreover, qPCR analysis of sensitive leukemia cell lines treated with A-PACs showed changes in gene expression of several iron metabolism genes in sensitive leukemia cell lines (up-regulation of ferritin and transferrin receptors 1 and down-regulation of ferroportin) and several ROS-relevant genes (down-regulation of nuclear factor erythroid-2-related factor 2 and glutamate-cysteine ligase regulatory subunit). Mass spectrometry also confirmed that A-PACs bind iron. The results indicate that A-PACs not only target primary AML cells in vitro but are also effective in vivo. Secondary transplants are also being performed to determine the effects on LSC activity. Some of the anti-leukemia mechanisms under investigation include effects related to iron metabolism, ROS or inhibition of survival pathways. Understanding the unique structure and biological effects of A-PACs may provide novel information about pathways involved in the survival of LSCs and provide crucial information in preparation for clinical trials and/or optimal combination drug therapies. Disclosures: Rivella: Novartis: Consultancy; Bayer: Consultancy; Isis: Consultancy, Research Funding; Merganser: Equity Ownership, Research Funding; Biomarin: Consultancy; Alexion: Consultancy; Imago: Consultancy.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 721-726 ◽  
Author(s):  
M Beran ◽  
BS Andersson ◽  
P Kelleher ◽  
K Whalen ◽  
K McCredie ◽  
...  

Abstract In vitro characteristics of response to recombinant tumor necrosis factors alpha (rTNF-alpha) and beta (rTNF-beta) were studied in six human myelogenous leukemia cell lines. Heterogeneity of the response to rTNF was observed, and one line (K562) was resistant. No enhancement of cell growth was noted in any cell line. The dose-response curves for rTNF-alpha were characteristically sigmoid, the maximum inhibitory effect occurring between 25 and 200 ng/mL. Nonresponsiveness within this range indicated resistance that could not be overcome, even with very high doses of rTNF alpha. A similar response of sensitive and resistant lines occurred after exposure to rTNF-beta. The clonogenic cells were more sensitive than the overall population to the action of rTNF alpha, and prolonged exposure was necessary for manifestation of the effect. Concomitant exposure to recombinant interferon-alpha (rIFN- alpha) increased the response of two cell lines to rTNF-alpha, but no clear synergistic action could be demonstrated. The addition of rIFN- gamma was without effect. Variations in the rTNF-alpha-induced proliferative response could not be explained by differences in the number of binding sites per cell or their affinity for rTNF-alpha. That the clonogenic cells showed a higher sensitivity than the whole population might indicate a preferential effect on more primitive, actively proliferating cells with high growth potential.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Estefanía Burgos-Morón ◽  
Nuria Pastor ◽  
Manuel Luis Orta ◽  
Julio José Jiménez-Alonso ◽  
Carlos Palo-Nieto ◽  
...  

We recently screened a series of new aziridines β-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-β-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.


Author(s):  
Estefanía Burgos-Morón ◽  
Nuria Pastor ◽  
Manuel Luis Orta ◽  
Julio José Jiménez-Alonso ◽  
Carlos Palo-Nieto ◽  
...  

We recently screened a series of new aziridines &beta;-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-&beta;-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (detected with the comet assay). Cells deficient in the DNA repair pathway nucleotide excision repair (NER) were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. The combinations of AzGalp with either oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also displayed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.


Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Toshiki Ochi ◽  
Hiroshi Fujiwara ◽  
Koichiro Suemori ◽  
Taichi Azuma ◽  
Yoshihiro Yakushijin ◽  
...  

Abstract Aurora-A kinase (Aur-A) is a member of the serine/threonine kinase family that regulates the cell division process, and has recently been implicated in tumorigenesis. In this study, we identified an antigenic 9–amino-acid epitope (Aur-A207-215: YLILEYAPL) derived from Aur-A capable of generating leukemia-reactive cytotoxic T lymphocytes (CTLs) in the context of HLA-A*0201. The synthetic peptide of this epitope appeared to be capable of binding to HLA-A*2402 as well as HLA-A*0201 molecules. Leukemia cell lines and freshly isolated leukemia cells, particularly chronic myelogenous leukemia (CML) cells, appeared to express Aur-A abundantly. Aur-A–specific CTLs were able to lyse human leukemia cell lines and freshly isolated leukemia cells, but not normal cells, in an HLA-A*0201–restricted manner. Importantly, Aur-A–specific CTLs were able to lyse CD34+ CML progenitor cells but did not show any cytotoxicity against normal CD34+ hematopoietic stem cells. The tetramer assay revealed that the Aur-A207-215 epitope–specific CTL precursors are present in peripheral blood of HLA-A*0201–positive and HLA-A*2402–positive patients with leukemia, but not in healthy individuals. Our results indicate that cellular immunotherapy targeting Aur-A is a promising strategy for treatment of leukemia.


Sign in / Sign up

Export Citation Format

Share Document