A new hematopoietic cell line, KMT-2, having human interleukin-3 receptors

Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 501-507 ◽  
Author(s):  
S Tamura ◽  
M Sugawara ◽  
H Tanaka ◽  
E Tezuka ◽  
S Nihira ◽  
...  

Abstract A novel human cell line, KMT-2, from umbilical cord blood cells was established based on the selection of cultures in the presence of recombinant human interleukin-3 (IL-3) and the sorting of cells with anti-My 10 antibody. Morphologic and cytochemical studies (peroxidase negative, Sudan-black negative, chloroacetate esterase negative, PAS positive, nonspecific esterase positive) and phenotyping (HLA-DR, My7 = CD13, My9 = CD33, My10 = CD34, MCS-2, LeuM1 positive, glycophorin A negative, and P2 negative) suggest that the KMT-2 cells are myelomonocytic cells, probably of immature progenitor origin. Besides IL-3, granulocyte-macrophage colony-stimulating factor supported the growth of the KMT-2 cells, but IL-1 alpha, IL-2, IL-4, IL-5, and erythropoietin did not. IL-6 showed only slight activity. Binding studies with 125I-labeled recombinant human (rh) IL-3 indicated that IL- 3 bound to a single class of high affinity receptors (approximately 4,000 receptors/cell) on KMT-2 cells with a kd of approximately 200 pmol/L. The chemical cross-linking assay demonstrated that radiolabeled hIL-3 bound three molecules with molecular masses of 170, 130, and 70 Kd. Present data suggest that the newly established human cell line will be a valuable tool for the biologic assay of hIL-3, and a model for biochemical studies of IL-3 receptors.

Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 501-507
Author(s):  
S Tamura ◽  
M Sugawara ◽  
H Tanaka ◽  
E Tezuka ◽  
S Nihira ◽  
...  

A novel human cell line, KMT-2, from umbilical cord blood cells was established based on the selection of cultures in the presence of recombinant human interleukin-3 (IL-3) and the sorting of cells with anti-My 10 antibody. Morphologic and cytochemical studies (peroxidase negative, Sudan-black negative, chloroacetate esterase negative, PAS positive, nonspecific esterase positive) and phenotyping (HLA-DR, My7 = CD13, My9 = CD33, My10 = CD34, MCS-2, LeuM1 positive, glycophorin A negative, and P2 negative) suggest that the KMT-2 cells are myelomonocytic cells, probably of immature progenitor origin. Besides IL-3, granulocyte-macrophage colony-stimulating factor supported the growth of the KMT-2 cells, but IL-1 alpha, IL-2, IL-4, IL-5, and erythropoietin did not. IL-6 showed only slight activity. Binding studies with 125I-labeled recombinant human (rh) IL-3 indicated that IL- 3 bound to a single class of high affinity receptors (approximately 4,000 receptors/cell) on KMT-2 cells with a kd of approximately 200 pmol/L. The chemical cross-linking assay demonstrated that radiolabeled hIL-3 bound three molecules with molecular masses of 170, 130, and 70 Kd. Present data suggest that the newly established human cell line will be a valuable tool for the biologic assay of hIL-3, and a model for biochemical studies of IL-3 receptors.


1973 ◽  
Vol 248 (17) ◽  
pp. 6251-6253 ◽  
Author(s):  
Samuel C. Brooks ◽  
Elizabeth R. Locke ◽  
Herbert D. Soule

2021 ◽  
pp. 1-11
Author(s):  
Natalia Santucci ◽  
Rocío Stampone ◽  
Eduardo Brandão Ferreira da Silva ◽  
Silvina Villar ◽  
Silvana Spinelli ◽  
...  

<b><i>Introduction:</i></b> IL-1β, a cytokine from the innate immune response, is well known for its proinflammatory effects and stimulating activity on the hypothalamus-pituitary-adrenal axis, leading to the pituitary synthesis of adrenocorticotropic hormone followed by cortisol (and dehydroepiandrosterone – DHEA) release by the adrenal gland. While IL-1β modulates the adrenal steroidogenesis at the central level, it is unclear whether it also exerts an effect on the adrenal gland. <b><i>Method:</i></b> We studied the effect of IL-1β on adrenal steroid production and steroidogenic enzyme RNA expression in the human cell line NCI-H295R. We also explored eventual changes in the microRNA (miRNA) profile from IL-1β-treated NCI-H295R cells. <b><i>Results:</i></b> Transcripts encoding IL-1β receptors 1 and 2 were noticeable in the cell line, with cortisol and DHEA production showing a subtle increase after cytokine treatment. Transcripts from key enzymes in the steroidogenic pathway were analyzed, with no noticeable changes on them. The miRNA profile was modified by IL-1β treatment to an extent which bears some relationship with the regulatory mechanisms underlying adrenal steroid production. Since orphan nuclear receptors NR4As have emerged as potential key factors for coordinating inflammatory and metabolic responses, cell expression studies were also carried out to show an NR4As transcript augmentation following IL-1β treatment. <b><i>Discussion/Conclusions:</i></b> The subtle increase in adrenal steroid production in response to IL-1β stimulation without any modification in the transcription of the steroidogenic enzymes analyzed suggests an additional inflammatory/anti-inflammatory loop, wherein NR4As receptors may participate. Besides its physiological role, this process might be implied in pathological states accompanied by an unbalanced immune-endocrine relationship.


1988 ◽  
Vol 37 (15) ◽  
pp. 3038-3041 ◽  
Author(s):  
Maria Grandi ◽  
Fernando C. Giuliani

1996 ◽  
Vol 493 (1) ◽  
pp. 143-156 ◽  
Author(s):  
T Yamashita ◽  
Y Horio ◽  
M Yamada ◽  
N Takahashi ◽  
C Kondo ◽  
...  
Keyword(s):  

2021 ◽  
pp. 105154
Author(s):  
Aneesh V. Karkhanis ◽  
Eric Chun Yong Chan ◽  
Ee Chee Ren

Sign in / Sign up

Export Citation Format

Share Document