scholarly journals The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2624-2632 ◽  
Author(s):  
LC Wasley ◽  
G Timony ◽  
P Murtha ◽  
J Stoudemire ◽  
AJ Dorner ◽  
...  

Erythropoietin (EPO) plays a critical role in stimulating the proliferation and differentiation of erythroid precursor cells. EPO is heavily glycosylated with three asparagine (N)-linked tetraantennary oligosaccharides that may contain N-acetyl-lactosamine repeats and a single serine (O)-linked oligosaccharide. EPO expressed in Chinese hamster ovary cells exhibits biologic properties and amino acid and carbohydrate composition similar to natural urinary EPO. The importance of the complex N-linked and the O-linked carbohydrate was studied by expressing EPO in cells that are deficient in UDP-galactose/UDP-N- acetylgalactosamine 4-epimerase activity. In these cells, the ability to add galactose and N-acetylgalactosamine to glycoproteins can be controlled by the addition of these sugars to the culture medium. The results demonstrate that a block in O-linked glycosylation and/or the ability to process N-linked carbohydrate to completion does not alter EPO secretion. EPO produced without O-linked carbohydrate exhibits normal in vitro and in vivo biologic activity and in vivo clearance. However, EPO produced with incompletely processed N-linked oligosaccharides exhibits normal in vitro activity but is at least 500- fold less effective in stimulating erythropoiesis in vivo. Studies on the survival of bioactive EPO remaining in the circulation demonstrated that EPO with incomplete N-linked oligosaccharides exhibits a sevenfold increased rate of clearance. However, this increased clearance may not fully account for the 500-fold loss of in vivo activity. These results suggest a potentially important unique requirement for appropriate complex N-linked oligosaccharides for the intrinsic biologic activity of EPO in vivo.

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2624-2632 ◽  
Author(s):  
LC Wasley ◽  
G Timony ◽  
P Murtha ◽  
J Stoudemire ◽  
AJ Dorner ◽  
...  

Abstract Erythropoietin (EPO) plays a critical role in stimulating the proliferation and differentiation of erythroid precursor cells. EPO is heavily glycosylated with three asparagine (N)-linked tetraantennary oligosaccharides that may contain N-acetyl-lactosamine repeats and a single serine (O)-linked oligosaccharide. EPO expressed in Chinese hamster ovary cells exhibits biologic properties and amino acid and carbohydrate composition similar to natural urinary EPO. The importance of the complex N-linked and the O-linked carbohydrate was studied by expressing EPO in cells that are deficient in UDP-galactose/UDP-N- acetylgalactosamine 4-epimerase activity. In these cells, the ability to add galactose and N-acetylgalactosamine to glycoproteins can be controlled by the addition of these sugars to the culture medium. The results demonstrate that a block in O-linked glycosylation and/or the ability to process N-linked carbohydrate to completion does not alter EPO secretion. EPO produced without O-linked carbohydrate exhibits normal in vitro and in vivo biologic activity and in vivo clearance. However, EPO produced with incompletely processed N-linked oligosaccharides exhibits normal in vitro activity but is at least 500- fold less effective in stimulating erythropoiesis in vivo. Studies on the survival of bioactive EPO remaining in the circulation demonstrated that EPO with incomplete N-linked oligosaccharides exhibits a sevenfold increased rate of clearance. However, this increased clearance may not fully account for the 500-fold loss of in vivo activity. These results suggest a potentially important unique requirement for appropriate complex N-linked oligosaccharides for the intrinsic biologic activity of EPO in vivo.


2012 ◽  
Vol 31 (6) ◽  
pp. 584-594 ◽  
Author(s):  
Shayne C. Gad ◽  
Kelly L. Sharp ◽  
Charles Montgomery ◽  
J. Donald Payne ◽  
Glenn P. Goodrich

Gold nanoshells (155 nm in diameter with a coating of polyethylene glycol 5000) were evaluated for preclinical biocompatibility, toxicity, and biodistribution as part of a program to develop an injectable device for use in the photothermal ablation of tumors. The evaluation started with a complete good laboratory practice (GLP) compliant International Organization for Standardization (ISO)-10993 biocompatibility program, including cytotoxicity, pyrogenicity (US Pharmacopeia [USP] method in the rabbit), genotoxicity (bacterial mutagenicity, chromosomal aberration assay in Chinese hamster ovary cells, and in vivo mouse micronucleus), in vitro hemolysis, intracutaneous reactivity in the rabbit, sensitization (in the guinea pig maximization assay), and USP/ISO acute systemic toxicity in the mouse. There was no indication of toxicity in any of the studies. Subsequently, nanoshells were evaluated in vivo by intravenous (iv) infusion using a trehalose/water solution in a series of studies in mice, Sprague-Dawley rats, and Beagle dogs to assess toxicity for time durations of up to 404 days. Over the course of 14 GLP studies, the gold nanoshells were well tolerated and, when injected iv, no toxicities or bioincompatibilities were identified.


1985 ◽  
Vol 101 (3) ◽  
pp. 755-765 ◽  
Author(s):  
T J Mitchison ◽  
M W Kirschner

We have isolated chromosomes from Chinese hamster ovary cells arrested in mitosis with vinblastine and examined the interactions of their kinetochores with purified tubulin in vitro. The kinetochores nucleate microtubule (MT) growth with complex kinetics. After an initial lag phase, MTs are continuously nucleated with both plus and minus ends distally localized. This mixed polarity seems inconsistent with the formation of an ordered, homopolar kinetochore fiber in vivo. As isolated from vinblastine-arrested cells, kinetochores contain no bound tubulin. The kinetochores of chromosomes isolated from colcemid-arrested cells or of chromosomes incubated with tubulin in vitro are brightly stained after anti-tubulin immunofluorescence. This bound tubulin is probably not in the form of MTs. It is localized to the corona region by immunoelectron microscopy, where it may play a role in MT nucleation in vitro.


1977 ◽  
Vol 73 (3) ◽  
pp. 601-615 ◽  
Author(s):  
RR Gould ◽  
GG Borisy

The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1396-1399 ◽  
Author(s):  
K Gomi ◽  
M Zushi ◽  
G Honda ◽  
S Kawahara ◽  
O Matsuzaki ◽  
...  

Abstract Antithrombotic effect of recombinant human thrombomodulin in mice, both in vitro and in vivo, was studied. The soluble recombinant human thrombomodulin was expressed in Chinese hamster ovary cells and purified from the conditioned medium by a modification of the conventional method. Recombinant thrombomodulin prolonged thrombin clotting time for mouse plasma in a dose-dependent manner. Thrombin was injected into the lateral tail vein of mice and caused acute thromboembolism. All mice injected with thrombin died of thromboembolism; however, preinjection with recombinant human thrombomodulin neutralized the lethal effect of thrombin in a concentration-dependent manner. Histologic examination showed that fibrin deposits were found in all large and small arteries in the lung from mice injected with thrombin; however, fibrin deposits were not detected in any large arteries from the mouse preinjected with thrombomodulin.


1992 ◽  
Vol 8 (6) ◽  
pp. 369-376 ◽  
Author(s):  
David H. Blakey ◽  
Earle R. Nestmann ◽  
Janet M. Bayley ◽  
K. Laurie Maus ◽  
George R. Douglas

Toluenesulfonhydrazide (TSH) is a high volume production chemical for which there is relatively little toxicological data. In this study, the mutagenic activity of TSH was determined in the Salmonella/mammalian microsome assay and the in vitro chromosomal aberration assay using Chinese hamster ovary cells. TSH induced gene mutations both with and without metabolic activation in the Salmonella/mammalian microsome assay but that it did not induce chromosomal aberrations in Chinese hamster ovary cells. The results of this study indicate that TSH is an in vitro mutagen and should be assessed for in vivo mutagenicity.


2021 ◽  
pp. 026988112110336
Author(s):  
Isaac Victor Cohen ◽  
Laken Barber ◽  
Tyson Paul Dubnicka ◽  
Sara Beth Hurtado ◽  
Sarah Ann Tincher ◽  
...  

3,4 Methylenedioxymethamphetamine (MDMA)-assisted therapy has been recently found to be highly effective for treatment of posttraumatic stress disorder (PTSD). Previous studies have been inconclusive in elucidating potential MDMA genotoxicity. We performed three regulatory compliant studies to investigate the potential of genotoxic effects of MDMA treatment in humans: (1) an in vitro bacterial reverse mutation (Ames) assay, (2) an in vitro chromosome aberration test in Chinese hamster ovary cells, and (3) an in vivo micronucleus study in male Sprague Dawley rats. MDMA was found to not have genotoxic effects in any of the assays at or above clinically relevant concentrations.


Sign in / Sign up

Export Citation Format

Share Document