erythroid precursor
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 26)

H-INDEX

42
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Suhita Ray ◽  
Linda Chee ◽  
Yichao Zhou ◽  
Meg A Schaefer ◽  
Michael J Naldrett ◽  
...  

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals – involving cooperation between SCF/c-Kit signaling and other signaling inputs – are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system and promotes stress-dependent c-Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/c-kit signaling in CD71med spleen erythroid precursors. Given the roles of c-Kit signaling in hematopoiesis and Samd14 in c-Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.


2021 ◽  
Author(s):  
Cristina Zuccato ◽  
Lucia Carmela Cosenza ◽  
Matteo Zurlo ◽  
Jessica Gasparello ◽  
Chiara Papi ◽  
...  

Introduction: The β-thalassemias are due to autosomal mutations of the β-globin gene, inducing absence or low-level synthesis of β-globin in erythroid cells. It is widely accepted that high production of fetal hemoglobin (HbF) is beneficial for β-thalassemia patients. Sirolimus, also known as rapamycin, is a lipophilic macrolide isolated from a strain of Streptomyces hygroscopicus found to be a strong HbF inducer in vitro and in vivo. In this study, we report biochemical, molecular and clinical results of the sirolimus-based NCT03877809 clinical trial (A Personalized Medicine Approach for β-thalassemia Transfusion Dependent Patients: Testing sirolimus in a First Pilot Clinical Trial: Sirthalaclin). Methods: Accumulation of γ-globin mRNA was analyzed by reverse-transcription-quantitative PCR and the hemoglobin pattern by HPLC. The immunophenotype was analyzed by FACS using antibodies against CD3, CD4, CD8, CD14, CD19, CD25. Results: The results were obtained in 8 patients with β+/β+ and β+/β0 genotypes, treated with a starting dosage of 1 mg/day sirolimus for 24-48 weeks. The first finding of the study was that expression of γ-globin mRNA was increased in blood and erythroid precursor cells isolated from β-thalassemia patients treated with low-dose sirolimus. A second important conclusion of our trial was that sirolimus influences erythropoiesis and reduces biochemical markers associated to ineffective erythropoiesis (I.E.) (excess of free α-globin chains, bilirubin, soluble transferrin receptor and ferritin). In most (7/8) of the patients a decrease of the transfusion index was observed. The drug was well tolerated with minor effects on immunophenotype, the only side effect being frequently occurring stomatitis. Conclusions: The data obtained indicate that sirolimus given at low doses modifies hematopoiesis and induces increased expression of γ-globin genes in a sub-set of β-thalassemia patients. Further clinical trials are warranted, considering the possibility to test the drug in patients with less severe forms of the disease and exploring combination therapies.


2021 ◽  
Vol 22 (24) ◽  
pp. 13433
Author(s):  
Cristina Zuccato ◽  
Lucia Carmela Cosenza ◽  
Matteo Zurlo ◽  
Ilaria Lampronti ◽  
Monica Borgatti ◽  
...  

β-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding β-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for β-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from β-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine β-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of β-thalassemia.


2021 ◽  
pp. 105566562110537
Author(s):  
Satoshi Sasaki ◽  
Hideki Kitaura ◽  
Maki Goto ◽  
Michiko Yoshida ◽  
Itaru Mizoguchi

Diamond Blackfan anemia (DBA) is a chronic congenital form of erythrocytic hypoplasia in which erythroid precursor cell levels are low. DBA reflects ribosomal dysfunction and is accompanied by hematopoietic cell apoptosis, anemia, and various somatic symptoms. We report the characteristic symptoms of the craniofacial region and the orthodontic treatments of two DBA cases. Case 1 was a 12-year-old female. The typical physical and facial characteristics of DBA were lacking. On initial examination, she exhibited a skeletal Class II jaw and end to end molar relationships and a large overjet. An edgewise appliance was placed after extraction of the first maxillary premolars. After 3 years and 11 months, an appropriate overjet and overbite, rigid intercuspation, and an acceptable profile were evident without any clinical adverse effects. Case 2 was a 13-year-old female. She exhibited a skeletal Class I jaw relationship, a spaced dental arch, the maxillofacial dysplasia characteristic of Binder syndrome, hypoplasia of the right mandibular condyle, and labial protrusions of the maxillary and mandibular incisors. We placed an edgewise appliance and after 1 year and 7 months, the occlusion was optimal in the absence of any adverse effects. Our two DBA cases exhibited a broad spectrum of physical and dentofacial symptoms. Patients with DBA are often prescribed combined steroid/bisphosphonate therapies. Both agents are likely to affect alveolar bone remodeling after tooth extraction and orthodontic tooth movement. Careful consideration of medication with reference to various dentofacial characteristics is necessary.


Author(s):  
Peng Li ◽  
Shobi Venkatachalam ◽  
Daniela Ospina Cardona ◽  
Lorena Wilson ◽  
Tibor J Kovacsovics ◽  
...  

VEXAS (vacuoles, E1 enzyme, X- linked, autoinflammatory, somatic) syndrome is caused by somatic mutations in UBA1 and is identified using a genotype-driven method. This condition connects unrelated men with adult-onset inflammatory syndromes in association with hematologic manifestations of peripheral cytopenia and bone marrow myeloid dysplasia. While bone marrow vacuolization restricted to myeloid and erythroid precursors has been identified in VEXAS patients, the detailed clinical and histopathological features of peripheral blood and bone marrows remain unclear. The current case report describes the characteristic hematologic findings in patients with VEXAS, including macrocytic anemia, thrombocytopenia, marked hypercellular marrow with granulocytic hyperplasia, megaloblastic changes in erythroid precursors, and the absence of hematogones in addition to prominent vacuoles in myeloid and erythroid precursor cells. Characterizing the clinical and hematologic features helps to raise awareness and improve diagnosis of this novel, rare, but potentially under-recognized disease. Prompt diagnosis expands the general knowledgeable and understanding of this disease, and optimal management might prevent patients from developing complications related to this refractory inflammatory syndrome and improve the overall clinical outcome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Agnieszka Biernatowska ◽  
Paulina Olszewska ◽  
Krzysztof Grzymajło ◽  
Dominik Drabik ◽  
Sebastian Kraszewski ◽  
...  

AbstractFlotillins are the major structural proteins in erythroid raft domains. We have shown previously that the dynamic nanoscale organization of raft domains in erythroid cells may depend on flotillin-MPP1 interactions. Here, by using molecular dynamic simulations and a surface plasmon resonance-based approach we determined that high-affinity complexes of MPP1 and flotillins are formed via a so far unidentified region within the D5 domain of MPP1. Significantly, this particular “flotillin binding motif” is of key physiological importance, as overexpression of peptides containing this motif inhibited endogenous MPP1-flotillin interaction in erythroid precursor cells, thereby causing lateral disorganization of raft domains. This was reflected by both reduction in the plasma membrane order and markedly decreased activation of signal transduction via the raft-dependent insulin receptor pathway. Our data highlight new molecular details concerning the mechanism whereby MPP1 functionally links flotillins to exert their physiological role in raft domain formation.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 606
Author(s):  
Ieva Rinkūnaitė ◽  
Egidijus Šimoliūnas ◽  
Daiva Bironaitė ◽  
Rasa Rutkienė ◽  
Virginija Bukelskienė ◽  
...  

Parvovirus B19 (B19V) is a widespread human pathogen possessing a high tropism for erythroid precursor cells. However, the persistence or active replication of B19V in endothelial cells (EC) has been detected in diverse human pathologies. The VP1 unique region (VP1u) of the viral capsid has been reported to act as a major determinant of viral tropism for erythroid precursor cells. Nevertheless, the interaction of VP1u with EC has not been studied. We demonstrate that recombinant VP1u is efficiently internalized by rats’ pulmonary trunk blood vessel-derived EC in vitro compared to the human umbilical vein EC line. The exposure to VP1u was not acutely cytotoxic to either human- or rat-derived ECs, but led to the upregulation of cellular stress signaling-related pathways. Our data suggest that high levels of circulating B19V during acute infection can cause endothelial damage, even without active replication or direct internalization into the cells.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Huijun Huang ◽  
Wenjun Zhang ◽  
Wenyu Cai ◽  
Jinqin Liu ◽  
Huijun Wang ◽  
...  

AbstractVEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a newly-described adult-onset inflammatory syndrome characterized by vacuoles in myeloid and erythroid precursor cells and somatic mutations affecting methionine-41 (p.Met41) in UBA1. The VEXAS syndrome often overlaps with myelodysplastic syndromes (MDS) with autoimmune disorders (AD). By screening the UBA1 gene sequences derived from MDS patients with AD from our center, we identified one patient with a p.Met41Leu missense mutation in UBA1, who should have been diagnosed as MDS comorbid with VEXAS syndrome. This patient respond poorly to immune suppressive drugs. Patients with MDS and AD who have characteristic vacuoles in myeloid and erythroid precursor cells should be screened for UBA1 mutation, these patients are likely to have VEXAS syndrome and unlikely to improve with immunosuppressive drugs and should be considered for other alternative therapies.


Author(s):  
Christina Alexandres ◽  
Basma Basha ◽  
Rebecca L. King ◽  
Matthew T. Howard ◽  
Kaaren K. Reichard

AbstractPure erythroid leukemia (PEL) is a rare, aggressive subtype of acute myeloid leukemia with a poor prognosis. The diagnosis of PEL is often medically urgent, quite challenging, and is typically a diagnosis of exclusion requiring meticulous distinction from non-neoplastic erythroid proliferations, particularly florid erythroid hyperplasia/regeneration. Given the frequency of TP53 mutations in the molecular signature of PEL, we hypothesize that differential p53 expression by immunohistochemistry (IHC) may be useful in distinguishing PEL versus non-neoplastic erythroid conditions. We performed p53 IHC on 5 normal bone marrow, 46 reactive erythroid proliferations, and 27 PEL cases. We assessed the positivity and intensity of nuclear staining in pronormoblasts and basophilic normoblasts using a 0–3+ scale with 0 being absent (with internal positive controls) and 3 being strong nuclear positivity. A total of 26/27 PEL cases showed strong, uniform, diffuse intense staining by the neoplastic pronormoblasts versus 0/5 and 0/46 normal and reactive controls, respectively. The control cases show various staining patterns ranging from 0 to 3+ in scattered erythroid precursor cells. Uniform, strong p53 positivity is unique to PEL and discriminates this entity from a benign erythroid mimic. Thus, p53 IHC may be a useful marker in urgent medical cases to assist in the confirmation of a malignant PEL diagnosis while awaiting the results of additional ancillary studies such as cytogenetics.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-32
Author(s):  
Gordon G. L. Wong ◽  
Gabriela Krivdova ◽  
Olga I. Gan ◽  
Jessica L. McLeod ◽  
John E. Dick ◽  
...  

Micro RNA (miRNA)-mediated gene silencing, largely mediated by the Argonaute (AGO) family proteins, is a post-transcriptional gene expression control mechanism that has been shown to regulate hematopoietic stem and progenitor cells (HSPCs) quiescence, self-renewal, proliferation, and differentiation. Interestingly, only the function of AGO2 in hematopoiesis has been investigated. O'Carroll et al. (2007) showed that AGO2 knockout in mice bone marrow cells interferes with B220low CD43- IgM-pre-B cells and peripheral B cell differentiation and impairs Ter119high, CD71high erythroid precursors maturation. However, the functional significance of other AGO proteins in the regulation of stemness and lineage commitment remains unclear. AGO submembers, AGO1-4 in humans, are traditionally believed to act redundantly in their function. However, our previous proteomic analysis from sorted populations of the human hematopoietic hierarchy shows each sub-member is differentially expressed during HSPCs development, suggesting each sub-member may have a specialized function in hematopoiesis. Here, we conducted CRISPR-Cas9 mediated knockout of AGO1-4 in human cord blood derived long-term (LT-) and short-term hematopoietic stem cells (ST-HSCs) and investigated the impact of the loss of function of individual AGOs in vitro and in vivo in xenograft assays. From the in vitro experiment, we cultured CRISPR-edited LT- or ST-HSCs in a single cell manner on 96-well plates pre-cultured with murine MS5 stroma cells in erythro-myeloid differentiation condition. The colony-forming capacity and lineage commitment of each individual HSC is assessed on day 17 of the culture. Initial data showed that AGO1, AGO2 and AGO3 knockout decreased the colony formation efficacy of both LT- and ST-HSCs, suggesting AGO1, AGO2 and AGO3 are involved in LT- and ST-HSCs proliferation or survival. As for lineage output, AGO1 knockout increases CD56+ natural killer cell commitment in LT-HSCs and erythroid differentiation in ST-HSCs; AGO2 knockout increases erythroid differentiation in both LT- and ST-HSCs and decreases myeloid differentiation in ST-HSCs; while AGO4 knockout seems to decrease erythroid output. For the in vivo experiment, we xenotransplanted AGO1 and AGO2 knockout LT-HSCs in irradiated immunodeficient NSG mice and assessed the change in LT-HSCs engraftment level and lineage differentiation profile at 12- and 24-week time points. We found that AGO2 knockout increased CD45+ engraftment at both 12- and 24-weeks. Aligning with our in vitro data, AGO2 knockout increases GlyA+ erythroid cells at 12- and 24-weeks. The increase in GlyA+ erythroid cells is a consequence of the 2-fold increase in GlyA+ CD71+ erythroid precursor cells, recapitulating previous findings that AGO2 knockout in mice impairs CD71high erythroid precursor maturation leading to the accumulation of undifferentiated CD71+ erythroid precursors (O'Carroll et al., 2007). Accumulation of early progenitors of the erythroid lineage, including the common myeloid progenitors (CMPs) and myelo-erythroid progenitor (MEPs) were observed, as well as their progeny including CD33+ myeloid and CD41+ megakaryocytes. For the myeloid lineage, AGO2 knockout shifts myeloid differentiation toward CD66b+ granulocytes from CD14+ monocytes. For lymphoid, AGO2 knockout decreases CD19+ CD10- CD20+ mature B-lymphoid cells, which again aligns with previous AGO2 knockout mice results. On the other hand, AGO1 knockout LT-HSCs share some similar phenotype with AGO2 knockout LT-HSCs, where AGO1 knockout increases CD71+ erythroid precursors. However, AGO1 knockout in LT-HSCs also results in unique phenotypes, with a decrease in neutrophil formation and an increase in CD4+ CD8+ T progenitor cells are observed. AGO3 and AGO4 knockout experiments are in progress. In summary, our AGO2 knockout experiments recapitulate the reported results from murine studies but also illustrate a more complete role of AGO2 in hematopoietic lineage differentiation. Moreover, AGO knockout experiments of individual submembers are revealing novel insights into their role in the regulation of stemness and lineage commitment of LT-HSCs and ST-HSCs. These data point to a unique role of different AGO isoforms in lineage commitment in human HSCs and argue against redundant functioning. Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document