scholarly journals The role of glycosylation in the biosynthesis and acquisition of ligand- binding activity of the folate-binding protein in cultured KB cells

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1171-1180 ◽  
Author(s):  
CA Luhrs

Abstract The biosynthesis, processing, and ligand-binding function of the membrane-associated and soluble forms of the folate-binding protein (FBP) in KB cells, a cultured human cell line, were studied using pulse- chase labeling with [35S] methionine. The intermediary and mature forms of the protein were isolated by immunoprecipitation and affinity chromatography and analyzed by sodium dodecyl sulfate electrophoresis and autoradiography. The earliest species identified had an Mr of 32 Kd and disappeared over 5 hours concomitant with the appearance of a 38-Kd cellular FBP. As the 38-Kd species disappeared, a 40-Kd form appeared in the medium. When tunicamycin was added to the culture medium to inhibit core glycosylation, a 26-Kd aglycosylated species and minor 28- Kd and 30-Kd forms appeared. Endoglycosidase H, which cleaves high mannose but not complex oligosaccharides, reduced the 32-Kd species to 26-Kd but the enzyme had no effect on the 38-Kd form, indicating that this species is complex glycosylated. Monensin, which blocks complex glycosylation, also inhibited synthesis of the 38-Kd species. Although both the 32-Kd and 38-Kd forms had ligand-binding sites (as demonstrated by binding to a folate-Sepharose matrix), the 26-Kd aglycosylated species, labeled in the presence of tunicamycin, lacked similar binding sites because it did not bind to the affinity matrix. In contrast, the aglycosylated 26-Kd form, which was obtained by treatment of the 32-Kd species with endoglycosidase H, did bind to the folate affinity matrix, indicating that it retained ligand-binding function. Thus, the high mannose oligosaccharide moiety is not required for the folate-binding property of the FBP, but its addition to the polypeptide chain precedes a later step that is necessary for the mature protein to have ligand-binding function.

Blood ◽  
1991 ◽  
Vol 77 (6) ◽  
pp. 1171-1180
Author(s):  
CA Luhrs

The biosynthesis, processing, and ligand-binding function of the membrane-associated and soluble forms of the folate-binding protein (FBP) in KB cells, a cultured human cell line, were studied using pulse- chase labeling with [35S] methionine. The intermediary and mature forms of the protein were isolated by immunoprecipitation and affinity chromatography and analyzed by sodium dodecyl sulfate electrophoresis and autoradiography. The earliest species identified had an Mr of 32 Kd and disappeared over 5 hours concomitant with the appearance of a 38-Kd cellular FBP. As the 38-Kd species disappeared, a 40-Kd form appeared in the medium. When tunicamycin was added to the culture medium to inhibit core glycosylation, a 26-Kd aglycosylated species and minor 28- Kd and 30-Kd forms appeared. Endoglycosidase H, which cleaves high mannose but not complex oligosaccharides, reduced the 32-Kd species to 26-Kd but the enzyme had no effect on the 38-Kd form, indicating that this species is complex glycosylated. Monensin, which blocks complex glycosylation, also inhibited synthesis of the 38-Kd species. Although both the 32-Kd and 38-Kd forms had ligand-binding sites (as demonstrated by binding to a folate-Sepharose matrix), the 26-Kd aglycosylated species, labeled in the presence of tunicamycin, lacked similar binding sites because it did not bind to the affinity matrix. In contrast, the aglycosylated 26-Kd form, which was obtained by treatment of the 32-Kd species with endoglycosidase H, did bind to the folate affinity matrix, indicating that it retained ligand-binding function. Thus, the high mannose oligosaccharide moiety is not required for the folate-binding property of the FBP, but its addition to the polypeptide chain precedes a later step that is necessary for the mature protein to have ligand-binding function.


Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3485-3491 ◽  
Author(s):  
Teruo Kiyoi ◽  
Yoshiaki Tomiyama ◽  
Shigenori Honda ◽  
Seiji Tadokoro ◽  
Morio Arai ◽  
...  

The molecular basis for the interaction between a prototypic non–I-domain integrin, αIIbβ3, and its ligands remains to be determined. In this study, we have characterized a novel missense mutation (Tyr143His) in αIIb associated with a variant of Glanzmann thrombasthenia. Osaka-12 platelets expressed a substantial amount of αIIbβ3(36%-41% of control) but failed to bind soluble ligands, including a high-affinity αIIbβ3-specific peptidomimetic antagonist. Sequence analysis revealed that Osaka-12 is a compound heterozygote for a single 521T>C substitution leading to a Tyr143His substitution in αIIb and for the null expression of αIIb mRNA from the maternal allele. Given that Tyr143 is located in the W3 4-1 loop of the β-propeller domain of αIIb, we examined the effects of Tyr143His or Tyr143Ala substitution on the expression and function of αIIbβ3 and compared them with KO (Arg-Thr insertion between 160 and 161 residues of αIIb) and with the Asp163Ala mutation located in the same loop by using 293 cells. Each of them abolished the binding function of αIIbβ3 for soluble ligands without disturbing αIIbβ3 expression. Because immobilized fibrinogen and fibrin are higher affinity/avidity ligands for αIIbβ3, we performed cell adhesion and clot retraction assays. In sharp contrast to KO mutation and Asp163AlaαIIbβ3, Tyr143HisαIIbβ3-expressing cells still had some ability for cell adhesion and clot retraction. Thus, the functional defect induced by Tyr143HisαIIb is likely caused by its allosteric effect rather than by a defect in the ligand-binding site itself. These detailed structure–function analyses provide better understanding of the ligand-binding sites in integrins.


1986 ◽  
Vol 250 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Carol A. Luhrs ◽  
Easwara Sadasivan ◽  
Maria da Costa ◽  
Sheldon P. Rothenberg

2001 ◽  
Vol 21 (6) ◽  
pp. 733-743 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen

Binding of folate (pteroylglutamate) and 5-methyltetrahydrofolate, the major endogenous form of folate, to folate binding protein purified from cow's milk was studied at 7°C to avoid degradation of 5-methyltetrahydrofolate. Both folates dissociate rapidly from the protein at pH 3.5, but extremely slowly at pH 7.4, most likely due to drastic changes in protein conformation occurring after folate binding. Dissociation of 5-methyltetrahydrofolate showed no increase at 37°C suggesting that protein-bound-5-methyltetrahydrofolate is protected against degradation. Binding displayed two characteristics, positive cooperativity and a binding affinity that increased with decreasing concentrations of the protein. The binding affinity of folate was somewhat greater than that of 5-methyl tetrahydrofolate, in particular at pH 5.0. Ligand-bound protein exhibited concentration-dependent polymerization (8-mers formed at 13 μM) at pH 7.4. At pH 5.0, only folate-bound forms showed noticeable polymerization. The fact that folate at pH 5.0 surpasses 5-methyltetrahydrofolate both with regard to binding affinity and ability to induce polymerization suggests that ligand binding is associated with conformational changes of the protein which favor polymerization.


2001 ◽  
Vol 21 (3) ◽  
pp. 305-313 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen

A high-affinity folate binding protein was isolated and purified from cow's milk by a combination of cation exchange chromatography and methotrexate affinity chromatography. Chromatofocusing studies revealed that the protein possessed isoelectric points in the pH-interval 8–7. Polymers of the protein prevailing at pH values close to the isoelectric points seemed to be more hydrophobic than monomers present at pH 5.0 as evidenced by hydrophobic interaction chromatography and turbidity (absorbance at 340 nm) in aqueous buffer solutions (pH 5–8). Ligand binding seemed to induce a conformation change that decreased the hydrophobicity of the protein. In addition, Ligand binding quenched the tryptophan fluorescence of folate binding protein suggesting that tryptophan is present at the binding site and/or ligand binding induces a conformation change that affects tryptophan environment in the protein. There was a noticeable discordance between the ability of individual folate analogues to compete with folate for binding and the quenching effect.


1976 ◽  
Vol 22 (7) ◽  
pp. 1047-1052 ◽  
Author(s):  
A Zettner ◽  
P E Duly

Abstract On diethylaminoethyl-cellulose column chromatography, the folate binding protein in the serum of 21 patients eluted in the early effluents as a single sharply defined peak. The chromatographic behavior of the folate binder remained unchanged whether or not the serum was, before chromatography, complexed with tritium-labeled pteroylglutamic acid ([3H]PGA), dialyzed, or charcoal-adsorbed. Heating to 100 degrees C for 10 min dissociated the [3H]PGA-binder complex while destroying the folate binding property. The presence or appearance of this folate binder in increased amounts in the serum of patients with various diseases may be related to conditions of increased tissue turnover.


Sign in / Sign up

Export Citation Format

Share Document