methyl tetrahydrofolate
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 9)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chunyi Zhang ◽  
Ling Jiang ◽  
Wenzhu Guo ◽  
Yanjing Wang ◽  
Weiwei Wen ◽  
...  

Abstract Folate deficiency is a global health problem. Biofortification has been considered a cost-effective means to tackle this problem. Here, we describe the genetic cloning and functional identification of a previously uncharacterised plant protein, designated as CTM, which functions as an enzyme in folate metabolism. Plant CTMs are capable of catalysing 5-methyl-tetrahydrofolate to MeFox, a pyrazino-s-triazine derivative of 4α-hydroxy-5-methyl-tetrahydrofolate. The natural asparagine-to-glycine substitution caused by an A-to-G single nucleotide variation in maize CTM enhances its enzymatic activity, as demonstrated by in vitro enzymatic assays and in silico analyses using a maize CTM structure model based on a monomeric sorghum CTM crystal. Loss of the CTM function led to accumulation of 5-methyl-tetrahydrofolate, and overexpression of the maize CTM carrying the G-allele boosted the metabolic flow towards MeFox, and showed no negative impacts on plant growth. Our results suggest that CTM, which has evolved 5-methyl-tetrahydrofolate-to-MeFox converting activity in plants, could be valuable for developing folate-biofortified crops to provide an alternative to the challenge presented by the global folate deficiency.


2020 ◽  
Author(s):  
Joshua Z. Wang ◽  
Jonathan M. Ghergurovich ◽  
Lifeng Yang ◽  
Joshua D. Rabinowitz

AbstractMammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that methionine synthase is only a minor source of methionine in cell culture, tissues, or xenografted tumors. Instead, methionine synthase is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumor cells leads to folate trapping, purine synthesis stalling, nucleotide depletion, and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating tetrahydrofolate for use in one-carbon metabolism.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2701
Author(s):  
Hatim Azaryah ◽  
Juan Verdejo-Román ◽  
Cristina Martin-Pérez ◽  
José Antonio García-Santos ◽  
Cristina Martínez-Zaldívar ◽  
...  

Recent studies have shown that maternal supplementation with folate and long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy may affect children’s brain development. We aimed at examining the potential long-term effect of maternal supplementation with fish oil (FO) and/or 5-methyl-tetrahydrofolate (5-MTHF) on the brain functionality of offspring at the age of 9.5–10 years. The current study was conducted as a follow-up of the Spanish participants belonging to the Nutraceuticals for a Healthier Life (NUHEAL) project; 57 children were divided into groups according to mother’s supplementation and assessed through functional magnetic resonance imaging (fMRI) scanning and neurodevelopment testing. Independent component analysis and double regression methods were implemented to investigate plausible associations. Children born to mothers supplemented with FO (FO and FO + 5-MTHF groups, n = 33) showed weaker functional connectivity in the default mode (DM) (angular gyrus), the sensorimotor (SM) (motor and somatosensory cortices) and the fronto-parietal (FP) (angular gyrus) networks compared to the No-FO group (placebo and 5-MTHF groups, n = 24) (PFWE < 0.05). Furthermore, no differences were found regarding the neuropsychological tests, except for a trend of better results in an object recall (memory) test. Considering the No-FO group, the aforementioned networks were associated negatively with attention and speed-processing functions. Mother’s FO supplementation during pregnancy seems to be able to shape resting-state network functioning in their children at school age and appears to produce long-term effects on children´s cognitive processing.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1001
Author(s):  
Kenji Okano ◽  
Yu Sato ◽  
Shota Inoue ◽  
Shizuka Kawakami ◽  
Shigeru Kitani ◽  
...  

S-Adenosylmethionine (SAM)-dependent methyltransferases are important tools for the biocatalytic methylation of diverse biomolecules. Methylation by a whole-cell biocatalyst allows the utilization of intrinsic SAM and its regeneration system, which consists of a cyclic and multi-step enzymatic cascade. However, low intracellular availability of 5-methyl-tetrahydrofolate (5-methyl-THF), which functions as a methyl group donor, limits SAM regeneration. Here, we integrated methanol metabolism with 5-methyl-THF formation into SAM-dependent methylation system in Escherichia coli, driven by heterologously expressed methanol dehydrogenase (MDH). The coupling of MDH-catalyzed methanol oxidation with the E. coli endogenous reactions enhances the formation of 5-methyl-THF using methanol as a source of methyl group, thereby promoting both the SAM regeneration and methylation reactions. Co-expression of the mutant MDH2 from Cupriavidus necator N-1 with the O-methyltransferase 5 from Streptomyces avermitilis MA-4680 enhanced O-methylation of esculetin 1.4-fold. Additional overexpression of the E. coli endogenous 5,10-methylene-THF reductase, which catalyzes the last step of 5-methyl-THF formation, further enhanced the methylation reaction by 1.9-fold. Together with deregulation of SAM biosynthesis, the titer of methylated compounds was increased about 20-fold (from 0.023 mM to 0.44 mM). The engineered E. coli strain with enhanced 5-methyl-THF formation is now available as a chassis strain for the production of a variety of methylated compounds.


2019 ◽  
Vol 234 (9) ◽  
pp. 15010-15024 ◽  
Author(s):  
Lorenza Vitale ◽  
Valentina Serpieri ◽  
Mattia Lauriola ◽  
Allison Piovesan ◽  
Francesca Antonaros ◽  
...  

2018 ◽  
Vol 35 (8) ◽  
pp. 1431-1435 ◽  
Author(s):  
Edouard J. Servy ◽  
Laetitia Jacquesson-Fournols ◽  
Marc Cohen ◽  
Yves J. R. Menezo

Sign in / Sign up

Export Citation Format

Share Document