scholarly journals Myeloid differentiation of purified CD34+ cells after stimulation with recombinant human granulocyte-monocyte colony-stimulating factor (CSF), granulocyte-CSF, monocyte-CSF, and interleukin-3

Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3192-3199 ◽  
Author(s):  
T Egeland ◽  
R Steen ◽  
H Quarsten ◽  
G Gaudernack ◽  
YC Yang ◽  
...  

Abstract CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte- monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a “broad” myeloid profile, “broader” than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.

Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3192-3199 ◽  
Author(s):  
T Egeland ◽  
R Steen ◽  
H Quarsten ◽  
G Gaudernack ◽  
YC Yang ◽  
...  

CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte- monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a “broad” myeloid profile, “broader” than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1956-1961 ◽  
Author(s):  
H Ema ◽  
T Suda ◽  
K Nagayoshi ◽  
Y Miura ◽  
CI Civin ◽  
...  

Abstract To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. We isolated total CD34+ cells, CD34+,CD33+ cells, and CD34+,CD33- cells individually from normal human bone marrow cells by fluorescence- activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. CD34+,CD33+ cells formed granulocyte colonies in the presence of G-CSF. Both CD34+,CD33+ cells and CD34+,CD33- cells formed granulocyte/macrophage colonies in the presence of IL-3. Eosinophil (Eo) colonies were only formed by CD34+,CD33- cells in response to IL-3, but scarcely formed by CD34+ cells in the presence of IL-5. We performed the two-step cultures consisting of the primary liquid culture for 6 days and the secondary methylcellulose culture, and serially examined changes in phenotypes of ,he cells cultured in the primary culture. CD34-,CD33+ cells derived from CD34+,CD33+ cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. CD34-,CD33+ cells derived from CD34+,CD33- cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. Both CD34+ cells gradually lost the CD34 antigen by day 6 of incubation with G-CSF or IL- 3. Loss of this antigen was well-correlated with acquisition of susceptibility to IL-5. It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. G-CSF and IL-3 also supported the early stage of E. differentiation; IL- 5 supported the late stage of that.


Blood ◽  
2002 ◽  
Vol 99 (3) ◽  
pp. 746-753 ◽  
Author(s):  
Barton S. Johnson ◽  
LeMoyne Mueller ◽  
Jutong Si ◽  
Steven J. Collins

Abstract The disruption of retinoic acid receptor (RAR) activity that characterizes human acute promyelocytic leukemia (APL) is associated with a block to granulocytic differentiation indicating that RARs are critical regulators of normal myeloid differentiation. Nevertheless, how RAR activity might be regulated in the presumably homogenous concentration of retinoids in blood and bone marrow and how these receptors might interact with specific hematopoietic cytokines to regulate normal myeloid differentiation remain unclear. Here, using several cytokine-dependent in vitro models of myeloid development, it was observed that specific hematopoietic cytokines that normally regulate myeloid lineage commitment and differentiation (interleukin-3 and granulocyte-macrophage colony-stimulating factor) trigger the enhancement of both ligand-dependent and ligand-independent transcriptional activity of both endogenous and exogenous (transiently transfected) RARs. This cytokine-mediated enhancement of RAR activity is not associated with any observed changes in expression of the RARs or their respective coactivators/corepressors. These studies define a previously unknown cytokine-RAR interaction during myelopoiesis and suggest that RAR activation might be a critical downstream event following interleukin-3 and granulocyte-macrophage colony-stimulating factor signaling during myeloid differentiation. This observation of ligand-independent activation of RARs that is mediated by certain cytokines represents a new paradigm with respect to how RAR activity might be modulated during hematopoiesis and also suggests a molecular basis for the differential sensitivity of human acute myelogenous leukemia cells to retinoids.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1673-1678 ◽  
Author(s):  
E Naparstek ◽  
Y Hardan ◽  
M Ben-Shahar ◽  
A Nagler ◽  
R Or ◽  
...  

We studied an alternative method of using hematopoietic growth factors (HGFs) to enhance hematopoietic recovery in patients undergoing bone marrow transplantation (BMT), by short in vitro preincubation. Twenty consecutive patients with leukemia received T-cell-depleted allografts using Campath-1G. Two thirds of the marrow was infused on the scheduled day of transplant and one third of the marrow following preincubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on day 4. Engraftment parameters and duration of hospitalization were compared by actuarial analysis to those of 40 historical controls. Patients receiving the incubated boost had significantly faster platelet recovery (P = .017) and shorter hospitalization period (P = .001) when compared with the control subjects. Platelet count reached greater than 25 x 10(9)/L on day 17 (median) in the study group and on day 23 in the controls. The median duration of hospitalization was 20 and 36 days, respectively. In the early posttransplantation follow-up, two of four patients in the study group died as a result of graft rejection, while all 13 deaths in the control group resulted from complications associated with marrow suppression. We suggest that pretransplant in vitro activation of bone marrow cells with IL-3 and GM-CSF may prove to be an efficient method for enhancing marrow recovery after BMT.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
EC Guinan ◽  
YS Lee ◽  
KD Lopez ◽  
S Kohler ◽  
DH Oette ◽  
...  

Amegakaryocytic thrombocytopenia (AMT) is a rare and often fatal disorder of infancy and childhood presenting with isolated thrombocytopenia that progresses to marrow failure. The defect in thrombopoiesis is not well understood nor is the etiology of the progressive marrow failure. No standard modality of treatment exists. Here, we evaluated the capacity of marrow cells isolated from five patients with AMT and progressive marrow failure to generate megakaryocyte progenitor cells (CFU-MK). These in vitro studies demonstrated assayable numbers of CFU-MK from all patient bone marrows that responded in vitro to the addition of interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or the combination of both. These findings suggest that the defect in AMT might be partially correctable by the administration of these cytokines. A Phase I/II trial of in vivo administration of these same hematopoietins in the identical patients was conducted in which no significant toxicity was observed. IL-3 but not GM-CSF administration resulted in improved platelet counts in two patients and decreased bleeding and transfusion requirement in the remaining three. No clinical benefit was observed when GM-CSF was administered after IL-3 pretreatment. Prolonged IL-3 administration has resulted in platelet increases in an additional two patients. In vitro responsiveness of CFU- MK to either cytokine did not predict the degree of clinical response. Although the optimal dose and schedule of IL-3 either alone or in combination remains to be established, this study suggests that IL-3 may contribute to the treatment of patients with AMT.


Blood ◽  
1993 ◽  
Vol 81 (7) ◽  
pp. 1691-1698 ◽  
Author(s):  
EC Guinan ◽  
YS Lee ◽  
KD Lopez ◽  
S Kohler ◽  
DH Oette ◽  
...  

Abstract Amegakaryocytic thrombocytopenia (AMT) is a rare and often fatal disorder of infancy and childhood presenting with isolated thrombocytopenia that progresses to marrow failure. The defect in thrombopoiesis is not well understood nor is the etiology of the progressive marrow failure. No standard modality of treatment exists. Here, we evaluated the capacity of marrow cells isolated from five patients with AMT and progressive marrow failure to generate megakaryocyte progenitor cells (CFU-MK). These in vitro studies demonstrated assayable numbers of CFU-MK from all patient bone marrows that responded in vitro to the addition of interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or the combination of both. These findings suggest that the defect in AMT might be partially correctable by the administration of these cytokines. A Phase I/II trial of in vivo administration of these same hematopoietins in the identical patients was conducted in which no significant toxicity was observed. IL-3 but not GM-CSF administration resulted in improved platelet counts in two patients and decreased bleeding and transfusion requirement in the remaining three. No clinical benefit was observed when GM-CSF was administered after IL-3 pretreatment. Prolonged IL-3 administration has resulted in platelet increases in an additional two patients. In vitro responsiveness of CFU- MK to either cytokine did not predict the degree of clinical response. Although the optimal dose and schedule of IL-3 either alone or in combination remains to be established, this study suggests that IL-3 may contribute to the treatment of patients with AMT.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 565-571 ◽  
Author(s):  
LM Budel ◽  
IP Touw ◽  
R Delwel ◽  
SC Clark ◽  
B Lowenberg

Abstract Interleukin-3 (IL-3) and granulocyte-monocyte-colony-stimulating factor (GM-CSF) stimulate proliferation of human acute myeloid leukemia (AML) in vitro, although patterns of response among clinical cases are diverse. Whether regulatory abnormalities related to growth factor responses in human AML may establish the outgrowth of the neoplasm is unclear. We determined receptor numbers and affinity for IL-3 and GM- CSF on human AML cells using human recombinant IL-3 (rIL-3) and GM-CSF (rGM-CSF). In 13 of 15 cases of primary AML high-affinity (kd 26 to 414 pmol/L) receptors for IL-3 were demonstrable on the cells. The average numbers of IL-3 receptors ranged from 21 to 145 receptors per cell. Normal WBCs showed IL-3 receptors on their surface at similar densities. IL-3 receptor positivity often correlated with GM-CSF receptor positivity of AML; GM-CSF receptors were demonstrated on the cells of 11 of 15 cases, although average numbers of GM-CSF receptors were ten times greater. The in vitro response of the cells to exogenous IL-3 or GM-CSF was examined by measuring thymidine uptake. Because IL-3 and GM-CSF were potent inducers of DNA synthesis in vitro, apparently relatively few receptors are required to permit activation of growth. These experiments did not provide evidence for overexpression or increased receptor sensitivity as an explanation for AML growth. In a minority of cases, however, the cells were unable to respond to IL-3 (four of 15 cases) or GM-CSF (four of 15 cases) despite normal receptor availability on the cell surface.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1956-1961 ◽  
Author(s):  
H Ema ◽  
T Suda ◽  
K Nagayoshi ◽  
Y Miura ◽  
CI Civin ◽  
...  

To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. We isolated total CD34+ cells, CD34+,CD33+ cells, and CD34+,CD33- cells individually from normal human bone marrow cells by fluorescence- activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. CD34+,CD33+ cells formed granulocyte colonies in the presence of G-CSF. Both CD34+,CD33+ cells and CD34+,CD33- cells formed granulocyte/macrophage colonies in the presence of IL-3. Eosinophil (Eo) colonies were only formed by CD34+,CD33- cells in response to IL-3, but scarcely formed by CD34+ cells in the presence of IL-5. We performed the two-step cultures consisting of the primary liquid culture for 6 days and the secondary methylcellulose culture, and serially examined changes in phenotypes of ,he cells cultured in the primary culture. CD34-,CD33+ cells derived from CD34+,CD33+ cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. CD34-,CD33+ cells derived from CD34+,CD33- cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. Both CD34+ cells gradually lost the CD34 antigen by day 6 of incubation with G-CSF or IL- 3. Loss of this antigen was well-correlated with acquisition of susceptibility to IL-5. It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. G-CSF and IL-3 also supported the early stage of E. differentiation; IL- 5 supported the late stage of that.


Blood ◽  
1992 ◽  
Vol 80 (7) ◽  
pp. 1673-1678 ◽  
Author(s):  
E Naparstek ◽  
Y Hardan ◽  
M Ben-Shahar ◽  
A Nagler ◽  
R Or ◽  
...  

Abstract We studied an alternative method of using hematopoietic growth factors (HGFs) to enhance hematopoietic recovery in patients undergoing bone marrow transplantation (BMT), by short in vitro preincubation. Twenty consecutive patients with leukemia received T-cell-depleted allografts using Campath-1G. Two thirds of the marrow was infused on the scheduled day of transplant and one third of the marrow following preincubation with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) on day 4. Engraftment parameters and duration of hospitalization were compared by actuarial analysis to those of 40 historical controls. Patients receiving the incubated boost had significantly faster platelet recovery (P = .017) and shorter hospitalization period (P = .001) when compared with the control subjects. Platelet count reached greater than 25 x 10(9)/L on day 17 (median) in the study group and on day 23 in the controls. The median duration of hospitalization was 20 and 36 days, respectively. In the early posttransplantation follow-up, two of four patients in the study group died as a result of graft rejection, while all 13 deaths in the control group resulted from complications associated with marrow suppression. We suggest that pretransplant in vitro activation of bone marrow cells with IL-3 and GM-CSF may prove to be an efficient method for enhancing marrow recovery after BMT.


Sign in / Sign up

Export Citation Format

Share Document