scholarly journals Target cells for granulocyte colony-stimulating factor, interleukin-3, and interleukin-5 in differentiation pathways of neutrophils and eosinophils

Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1956-1961 ◽  
Author(s):  
H Ema ◽  
T Suda ◽  
K Nagayoshi ◽  
Y Miura ◽  
CI Civin ◽  
...  

To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. We isolated total CD34+ cells, CD34+,CD33+ cells, and CD34+,CD33- cells individually from normal human bone marrow cells by fluorescence- activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. CD34+,CD33+ cells formed granulocyte colonies in the presence of G-CSF. Both CD34+,CD33+ cells and CD34+,CD33- cells formed granulocyte/macrophage colonies in the presence of IL-3. Eosinophil (Eo) colonies were only formed by CD34+,CD33- cells in response to IL-3, but scarcely formed by CD34+ cells in the presence of IL-5. We performed the two-step cultures consisting of the primary liquid culture for 6 days and the secondary methylcellulose culture, and serially examined changes in phenotypes of ,he cells cultured in the primary culture. CD34-,CD33+ cells derived from CD34+,CD33+ cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. CD34-,CD33+ cells derived from CD34+,CD33- cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. Both CD34+ cells gradually lost the CD34 antigen by day 6 of incubation with G-CSF or IL- 3. Loss of this antigen was well-correlated with acquisition of susceptibility to IL-5. It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. G-CSF and IL-3 also supported the early stage of E. differentiation; IL- 5 supported the late stage of that.

Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1956-1961 ◽  
Author(s):  
H Ema ◽  
T Suda ◽  
K Nagayoshi ◽  
Y Miura ◽  
CI Civin ◽  
...  

Abstract To study the relationship between hematopoietic factors and their responsive hematopoietic progenitors in the differentiation process, both purified factors and enriched progenitors are required. We isolated total CD34+ cells, CD34+,CD33+ cells, and CD34+,CD33- cells individually from normal human bone marrow cells by fluorescence- activated cell sorter (FACS), and examined the effects of granulocyte colony-stimulating factor (G-CSF), interleukin-3 (IL-3), and IL-5 on in vitro colony formation of these cells. CD34+,CD33+ cells formed granulocyte colonies in the presence of G-CSF. Both CD34+,CD33+ cells and CD34+,CD33- cells formed granulocyte/macrophage colonies in the presence of IL-3. Eosinophil (Eo) colonies were only formed by CD34+,CD33- cells in response to IL-3, but scarcely formed by CD34+ cells in the presence of IL-5. We performed the two-step cultures consisting of the primary liquid culture for 6 days and the secondary methylcellulose culture, and serially examined changes in phenotypes of ,he cells cultured in the primary culture. CD34-,CD33+ cells derived from CD34+,CD33+ cells by preincubation with G-CSF or IL-3 formed Eo colonies in the presence of IL-5 but not IL-3. CD34-,CD33+ cells derived from CD34+,CD33- cells by preincubation with IL-3 also formed Eo colonies by support of IL-5 as well as IL-3. Both CD34+ cells gradually lost the CD34 antigen by day 6 of incubation with G-CSF or IL- 3. Loss of this antigen was well-correlated with acquisition of susceptibility to IL-5. It was concluded that G-CSF supported the neutrophil differentiation of committed colony-forming cells, IL-3 supported that of both committed and multipotent colony-forming cells. G-CSF and IL-3 also supported the early stage of E. differentiation; IL- 5 supported the late stage of that.


Blood ◽  
1991 ◽  
Vol 78 (12) ◽  
pp. 3192-3199 ◽  
Author(s):  
T Egeland ◽  
R Steen ◽  
H Quarsten ◽  
G Gaudernack ◽  
YC Yang ◽  
...  

Abstract CD34+ cells isolated from bone marrow or umbilical cord blood from healthy donors were studied for proliferation and differentiation in liquid cultures in the presence of recombinant human granulocyte- monocyte colony-stimulating factor (GM-CSF), granulocyte CSF (G-CSF), monocyte CSF (M-CSF), and interleukin-3 (IL-3), followed by immunophenotyping for myeloid and myeloid-associated cell surface markers. IL-3, either alone or together with GM-CSF, G-CSF, or M-CSF, induced, on average, 50-fold cell multiplication, GM-CSF five fold to 10-fold, and G-CSF and M-CSF less than fivefold. Cells from cultures stimulated with GM-CSF, G-CSF, or M-CSF alone contained cells with a “broad” myeloid profile, “broader” than observed in cultures with IL-3. However, since IL-3 induced rapid cell multiplication, high numbers of cells expressing early (CD13, CD33) and late myeloid markers (CD14, CD15) were recovered. The presence of other CSFs together with IL-3 did not alter the IL-3-induced effect on the cells. When 5,000 CD34+ cells were cultured with IL-3 alone, the cultures still contained 2,000 to 5,000 CD34+ cells after 14 days of culture, while cells cultured with GM-CSF, G-CSF, or M-CSF contained less than 1,000 CD34+ cells. Furthermore, 1,000 to 3,000 cells were positive for the megakaryocytic lineage marker CD41b after cultures with GM-CSF or IL-3, while cultures with G-CSF or M-CSF did not contain detectable numbers of CD41b+ cells. Finally, erythroid cells could also be generated from purified CD34+ cells. The results show that IL-3 and GM-CSF can induce rapid proliferation of purified CD34+ cells in vitro with differentiation to multiple myeloid lineages, while certain subsets maintain expression of CD34.


2017 ◽  
Vol 26 (3) ◽  
pp. 409-416 ◽  
Author(s):  
Sheng-Tzung Tsai ◽  
Sung-Chao Chu ◽  
Shu-Hsin Liu ◽  
Cheng-Yoong Pang ◽  
Ting-Wen Hou ◽  
...  

Parkinson's disease (PD) is a slowly progressive neurodegenerative disease. Both medical and surgical choices provide symptomatic treatment. Granulocyte colony-stimulating factor (G-CSF), a conventional treatment for hematological diseases, has demonstrated its effectiveness in acute and chronic neurological diseases through its anti-inflammatory and antiapoptosis mechanisms. Based on previous in vitro and in vivo studies, we administered a lower dose (3.3 μg/kg) G-CSF injection for 5 days and six courses for 1 year in early-stage PD patients as a phase I trial. The four PD patient's mean unified PD rating scale motor scores in medication off status remained stable from 23 before the first G-CSF injection to 22 during the 2-year follow-up. 3,4-Dihydroxy-6-18F-fluoro-L-phenylalanine (18F-DOPA) positron emission tomography (PET) studies also revealed an annual 3.5% decrease in radiotracer uptake over the caudate nucleus and 7% in the putamen, both slower than those of previous reports of PD. Adverse effects included transient muscular–skeletal pain, nausea, vomiting, and elevated liver enzymes. Based on this preliminary report, G-CSF seems to alleviate disease deterioration for early stage PD patients. The effectiveness of G-CSF was possibly due to its amelioration of progressive dopaminergic neuron degeneration.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2354-2359 ◽  
Author(s):  
MR Litzow ◽  
C Brashem-Stein ◽  
RG Andrews ◽  
ID Bernstein

Abstract Human hematopoietic colony-forming cells (CFC) express the CD34 antigen (CD34+) as well as differentiation antigens such as CD33 and HLA-DR. CD34+ cells that do not express these latter differentiation antigens have been shown to contain few CFC in direct culture, but generate increasing numbers of CFC when cultured over a marrow stromal cell layer in the long-term culture system. In this study we determined if CD34+ cells with low or absent expression of CD33 and a novel antigen, 7B9 (CD34+CD33–7B9-), could be distinguished from CD34+ cells expressing these antigens (CD34+CD33+7B9+) based on their proliferative responses to interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) in a short-term liquid culture system. These two populations were separated by fluorescence-activated cell sorting, cultured with IL-3 (10 ng/mL), G-CSF (100 ng/mL), or IL-3 and G-CSF, and 3H-thymidine uptake was measured. CD34+CD33–7B9- cells proliferated in the presence of IL-3, but not G-CSF. However, a synergistic response to the combination of IL-3 and G-CSF was seen in most experiments. In contrast, CD34+CD33+7B9+ cells proliferated in the presence of either IL-3 or G-CSF but did not display an additive or synergistic response to the combination of IL-3 and G-CSF. In colony-forming assays performed before and after liquid culture, the CD34+CD33–7B9- cells in two experiments contained 0.3% and 2.2% of all sorted marrow CFC before liquid culture and generated 40-fold and ninefold increases in the number of granulocyte-macrophage colony-forming units (CFU-GM), respectively, after liquid culture with IL-3 and G-CSF. In contrast, the CD34+CD33+7B9+ cells contained 99.7% and 97.8% of all sorted marrow CFC before liquid culture and had no change or a threefold increase in the number of CFU-GM, respectively, after liquid culture with IL-3 and G-CSF. Single-cell liquid cultures containing IL-3 and G-CSF with cells that were either CD34+CD33–7B9- and depleted of mature lymphoid cells (CD34+lin-) or were CD34+lin+ showed that a higher proportion of wells containing a CD34+lin- cell gave rise to one or more CFC (8.7%) than did wells containing a CD34+lin+ cell (2.9%), with the responding cells in the former population giving rise to an average of 2.9 +/- 0.6 CFC and in the latter population, 2.0 +/- 1.0 CFC.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2354-2359
Author(s):  
MR Litzow ◽  
C Brashem-Stein ◽  
RG Andrews ◽  
ID Bernstein

Human hematopoietic colony-forming cells (CFC) express the CD34 antigen (CD34+) as well as differentiation antigens such as CD33 and HLA-DR. CD34+ cells that do not express these latter differentiation antigens have been shown to contain few CFC in direct culture, but generate increasing numbers of CFC when cultured over a marrow stromal cell layer in the long-term culture system. In this study we determined if CD34+ cells with low or absent expression of CD33 and a novel antigen, 7B9 (CD34+CD33–7B9-), could be distinguished from CD34+ cells expressing these antigens (CD34+CD33+7B9+) based on their proliferative responses to interleukin-3 (IL-3) and granulocyte colony-stimulating factor (G-CSF) in a short-term liquid culture system. These two populations were separated by fluorescence-activated cell sorting, cultured with IL-3 (10 ng/mL), G-CSF (100 ng/mL), or IL-3 and G-CSF, and 3H-thymidine uptake was measured. CD34+CD33–7B9- cells proliferated in the presence of IL-3, but not G-CSF. However, a synergistic response to the combination of IL-3 and G-CSF was seen in most experiments. In contrast, CD34+CD33+7B9+ cells proliferated in the presence of either IL-3 or G-CSF but did not display an additive or synergistic response to the combination of IL-3 and G-CSF. In colony-forming assays performed before and after liquid culture, the CD34+CD33–7B9- cells in two experiments contained 0.3% and 2.2% of all sorted marrow CFC before liquid culture and generated 40-fold and ninefold increases in the number of granulocyte-macrophage colony-forming units (CFU-GM), respectively, after liquid culture with IL-3 and G-CSF. In contrast, the CD34+CD33+7B9+ cells contained 99.7% and 97.8% of all sorted marrow CFC before liquid culture and had no change or a threefold increase in the number of CFU-GM, respectively, after liquid culture with IL-3 and G-CSF. Single-cell liquid cultures containing IL-3 and G-CSF with cells that were either CD34+CD33–7B9- and depleted of mature lymphoid cells (CD34+lin-) or were CD34+lin+ showed that a higher proportion of wells containing a CD34+lin- cell gave rise to one or more CFC (8.7%) than did wells containing a CD34+lin+ cell (2.9%), with the responding cells in the former population giving rise to an average of 2.9 +/- 0.6 CFC and in the latter population, 2.0 +/- 1.0 CFC.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document