scholarly journals Hematopoietic growth factors released by marrow stromal cells from patients with aplastic anemia

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2256-2261 ◽  
Author(s):  
S Kojima ◽  
T Matsuyama ◽  
Y Kodera

We studied the production of granulocyte colony-stimulating factor (G- CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-6 (IL-6) by stromal cells from 33 patients with aplastic anemia (AA). Complete, confluent stromal layers were produced by 29 of the 33 samples using the long-term bone marrow culture (LTBMC) system. The concentration of G-CSF, GM-CSF, and IL-6 in culture media with or without interleukin-1 (IL-1) stimulation was determined by an enzyme- linked immunoadsorbent assay (ELISA). The spontaneous production of G- CSF, GM-CSF, and IL-6 did not differ significantly between normal controls and the patients with AA. The ability of stromal cells to release the three hematopoietic growth factors in response to IL-1 was either normal or elevated in all but one patient. We also studied the change in production of G-CSF, GM-CSF, and IL-6 by stromal cells before and after antilymphocyte globulin (ALG) therapy in 16 patients with AA. There was no correlation between the change in production of these cytokines and the response to ALG. In contrast to previous studies that showed a defect in the production of hematopoietic growth factors by stromal cells from patients with AA, the results indicated a normal or elevated production of G-CSF, GM-CSF, and IL-6 by marrow stromal cells in patients with AA.

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2256-2261 ◽  
Author(s):  
S Kojima ◽  
T Matsuyama ◽  
Y Kodera

Abstract We studied the production of granulocyte colony-stimulating factor (G- CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-6 (IL-6) by stromal cells from 33 patients with aplastic anemia (AA). Complete, confluent stromal layers were produced by 29 of the 33 samples using the long-term bone marrow culture (LTBMC) system. The concentration of G-CSF, GM-CSF, and IL-6 in culture media with or without interleukin-1 (IL-1) stimulation was determined by an enzyme- linked immunoadsorbent assay (ELISA). The spontaneous production of G- CSF, GM-CSF, and IL-6 did not differ significantly between normal controls and the patients with AA. The ability of stromal cells to release the three hematopoietic growth factors in response to IL-1 was either normal or elevated in all but one patient. We also studied the change in production of G-CSF, GM-CSF, and IL-6 by stromal cells before and after antilymphocyte globulin (ALG) therapy in 16 patients with AA. There was no correlation between the change in production of these cytokines and the response to ALG. In contrast to previous studies that showed a defect in the production of hematopoietic growth factors by stromal cells from patients with AA, the results indicated a normal or elevated production of G-CSF, GM-CSF, and IL-6 by marrow stromal cells in patients with AA.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4142-4150 ◽  
Author(s):  
MJ Aman ◽  
U Keller ◽  
G Derigs ◽  
M Mohamadzadeh ◽  
C Huber ◽  
...  

We investigated the effects of interferon-alpha (IFN-alpha) on the expression of cytokines by human bone marrow stromal cells. Production of granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte-CSF (G-CSF), and interleukin-1 beta (IL-1 beta) in stromal cell layers was induced by incubation with IL-1 alpha, tumor necrosis factor (TNF), or lipopolysaccharide (LPS). Addition of IFN-alpha to such stimulated cultures resulted in a strong downregulation of mRNA expression of GM-CSF and IL-1 beta. Similarly, the protein levels of GM- CSF and IL-1 beta were significantly reduced by IFN-alpha, whereas G- CSF production was only moderately inhibited. In contrast, IFN-alpha markedly stimulated the production of IL-1 receptor antagonist (IL-1RA) by stromal cells. The inhibition of cytokine expression resulted in a reduced hematopoietic activity of stromal cells, indicated by a reduced proliferation of the factor dependent cell line MO7e on IFN-alpha- treated stromal cells. In the presence of cycloheximide (CHX), IFN- alpha failed to inhibit IL-1 mRNA expression, whereas the regulation of GM-CSF and IL-1RA by IFN-alpha was not affected. Our results indicate that the myelosuppressive effects of IFN-alpha, as observed in therapeutic applications or associated with viral infections, are, in part, indirectly mediated by inhibition of the paracrine production of hematopoietic growth factors.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 209-216 ◽  
Author(s):  
EM Macmillan ◽  
TJ Gonda

Abstract Murine myeloid cells can be transformed in vitro by infection with recombinant retroviruses carrying activated myb genes. While these myb- transformed hematopoietic cells (MTHCs) can proliferate continuously in culture, they exhibit several characteristics of progenitor cells of the granulocyte-macrophage (GM) lineage, including an absolute dependence on hematopoietic growth factors (HGFs) such as GM colony- stimulating factor (GM-CSF) for survival and growth. Whereas we have previously shown that MTHCs respond synergistically to certain combinations of HGFs, we report here that MTHCs apparently require two HGFs for proliferation, because GM-CSF alone appears insufficient to promote growth when MTHCs are cultured at very low densities. However, proliferation can be stimulated by either increasing the density at which MTHCs are cultured (implying the production of an autocrine growth factor) or by the presence of a feeder layer of irradiated fibroblasts. We find that the activity of such feeder layers is greatest when the MTHCs are allowed to contact them directly; and by using mutant fibroblast lines, that it depends on the production of CSF- 1, but not Steel factor (SLF). In contrast, the autocrine factor appears not to be either CSF-1 or SLF, and the possibility is raised that it may represent a novel HGF activity. Potential implications of these results for normal and leukemic hematopoiesis are discussed.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2813-2822 ◽  
Author(s):  
TJ Gonda ◽  
EM Macmillan ◽  
PV Townsend ◽  
AJ Hapel

Murine hematopoietic cells can be transformed in vitro by recombinant retroviruses that express the myb oncogene, and hematopoietic growth factor (HGF)-dependent myeloid cell lines can be derived from these transformed primary cells. In this study, the differentiation state and responses of myb-transformed hematopoietic cells (MTHCs) have been investigated. We find that MTHCs exhibit properties of early myeloid progenitors including synergistic responses to combinations of HGFs and expression of certain surface markers. As reported previously, MTHCs respond well to granulocyte-macrophage colony-stimulating factor (GM- CSF) but can also respond to interleukin-3 (IL-3); the response to the latter factor depends on the mouse strain from which the cells are derived. Although these single factors stimulate MTHCs, combinations of these factors with colony-stimulating factor-1 (CSF-1 or M-CSF) or Steel factor (SLF or SCF) act synergistically to promote colony formation. The surface markers expressed by MTHCs include both granulocyte-macrophage lineage specific antigens Gr-1, 7/4, F4/80, and Mac-1, as well as two antigens found on early progenitors and stem cells--Thy-1 and Sca-1 (Ly6E). Expression of the latter markers is often heterogeneous and can be modulated by the growth factors to which the cells are exposed. Finally, we show that monocytic differentiation of MTHCs can be induced by exposure to tumor necrosis factor (TNF alpha). Taken together, these results suggest that MTHCs will be a useful model for studying HGF/cytokine responses in both proliferation and differentiation.


Blood ◽  
1994 ◽  
Vol 84 (11) ◽  
pp. 3685-3690 ◽  
Author(s):  
LA Holmberg ◽  
K Seidel ◽  
W Leisenring ◽  
B Torok-Storb

Marrow samples from 89 patients with aplastic anemia (AA) were evaluated for their ability to grow stromal layers in standard long- term marrow cultures (LTMCs). Results were highly variable: 6.8% failed to grow any stromal cells (group I); 42.5% either failed to grow to confluency or appeared to have a decreased number of adipocytes and/or macrophages (group II); and 52.8% appeared as normal confluent cultures with fibroblasts, adipocytes, and macrophages (group III). Analyses of patient data suggested that group I patients had a longer disease duration and poorer survival (P = .07). Enzyme-linked immunosorbent assay analysis of cytokine production was performed on 20 of the normal- appearing AA LTMCs and 12 LTMCs established from normal donors. Significant differences between the AA and control groups were apparent for macrophage inflammatory protein-1 alpha (MIP-1 alpha), interleukin- 1 receptor antagonist (IL-1ra), granulocyte-macrophage colony- stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G- CSF), and leukemia-inhibitory factor (LIF). The most dramatic differences observed were elevated levels of MIP-1 alpha and GM-CSF and decreased levels of IL-1ra, particularly after IL-1 alpha stimulation. In contrast, IL-1 alpha stimulation of AA LTMCs produced levels of IL- 6, LIF, and G-CSF comparable with those of controls. These data suggest that defects exist within the microenvironment of some AA marrows. Whether the majority of these defects are the cause or consequence of aplasia is not clear. However, we speculate that some of these abnormalities may contribute to the maintenance of the hypoplastic state and, in extreme cases, prevent engraftment of donor marrow.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 965-973 ◽  
Author(s):  
MT Mitjavila ◽  
JL Villeval ◽  
P Cramer ◽  
A Henri ◽  
J Gasson ◽  
...  

Abstract Erythroid colonies from five patients with an early erythroblastic leukemia were obtained in “serum-free” cultures in the presence or absence of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and homogeneous native erythropoietin (Epo). Erythroid colonies with abnormal morphology and karyotype could be grown in different culture conditions. Their erythroid nature was ascertained by the presence of carbonic anhydrase I and glycophorin A. Leukemic erythroid progenitors strongly differed from normal progenitors in that spontaneous colonies were always obtained, sometimes with an extremely high plating efficiency (up to 5.7%). Colonies were found to be autonomous from exogenous hematopoietic growth factors because they were still obtained with a high plating efficiency at an average of one cell per culture in the absence of any added growth factor. No evidence for an autocrine secretion of Epo or GM-CSF emerged because Epo or GM- CSF could not be detected by biologic or radioimmunologic assays from the culture supernatant or cellular extracts of the leukemic cells and that Epo or GM-CSF antibodies did not block autonomous growth. In all cases, however, hematopoietic growth factors increased the plating efficiency of the abnormal erythroid progenitors. In the two “de novo” leukemias, leukemic erythroid progenitors responded primarily to Epo, whereas in the three other patients' (chronic myeloid leukemia) blast crisis they responded maximally to GM-CSF plus Epo. Recombinant erythroid-potentiating activity had no effect in any of these cases. These results suggest that the leukemic erythroid clonogenic cells arise from expansion of erythroid progenitors at different levels of differentiation (ie, CFU-E or BFU-E, depending upon the disease) and that autonomous growth is not related to a secretion of Epo or GM-CSF.


Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2813-2822 ◽  
Author(s):  
TJ Gonda ◽  
EM Macmillan ◽  
PV Townsend ◽  
AJ Hapel

Abstract Murine hematopoietic cells can be transformed in vitro by recombinant retroviruses that express the myb oncogene, and hematopoietic growth factor (HGF)-dependent myeloid cell lines can be derived from these transformed primary cells. In this study, the differentiation state and responses of myb-transformed hematopoietic cells (MTHCs) have been investigated. We find that MTHCs exhibit properties of early myeloid progenitors including synergistic responses to combinations of HGFs and expression of certain surface markers. As reported previously, MTHCs respond well to granulocyte-macrophage colony-stimulating factor (GM- CSF) but can also respond to interleukin-3 (IL-3); the response to the latter factor depends on the mouse strain from which the cells are derived. Although these single factors stimulate MTHCs, combinations of these factors with colony-stimulating factor-1 (CSF-1 or M-CSF) or Steel factor (SLF or SCF) act synergistically to promote colony formation. The surface markers expressed by MTHCs include both granulocyte-macrophage lineage specific antigens Gr-1, 7/4, F4/80, and Mac-1, as well as two antigens found on early progenitors and stem cells--Thy-1 and Sca-1 (Ly6E). Expression of the latter markers is often heterogeneous and can be modulated by the growth factors to which the cells are exposed. Finally, we show that monocytic differentiation of MTHCs can be induced by exposure to tumor necrosis factor (TNF alpha). Taken together, these results suggest that MTHCs will be a useful model for studying HGF/cytokine responses in both proliferation and differentiation.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 36-43
Author(s):  
K Watari ◽  
PM Lansdorp ◽  
W Dragowska ◽  
H Mayani ◽  
JW Schrader

Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect interleukin-1 beta (IL-1 beta) mRNA in candidate human hematopoietic stem cells. The cells, obtained from adult bone marrow (BM) or umbilical cord blood, had a CD34+ CD45RAlo CD71lo phenotype and were further fractionated into CD38+ and CD38- or Thy-1+ and Thy-1- subpopulations. The purity of these fractions was always more than 99%. IL-1 beta and CD34 mRNA were detected in pools of 30 BM-derived CD34+ CD45RAlo CD71lo cells. To further exclude any contribution by contaminating cells, individual cells were analyzed for CD34 and IL-1 beta mRNA. Positive results were obtained with 2 of 5 individual BM- derived CD34+ CD45RAlo CD71lo CD38+ cells isolated by micromanipulation after overnight culture in serum-free medium without any exogenous cytokines, and 1 of 10 individual CD34+ CD45RAlo CD71lo CD38- cells isolated immediately after sorting. Moreover, of 10 pools of three BM- derived CD34+ CD45RAlo CD71lo cells cultured overnight in the presence of a mixture of various cytokines (Steel factor, IL-3, IL-6, macrophage colony-stimulating factor [M-CSF], erythropoietin, and IL-3/granulocyte- macrophage colony-stimulating factor [GM-CSF] fusion protein), 5 were positive for IL-1 beta mRNA. This result was compatible with more than 20% (95% confidence limit 0.06–0.61) of the BM cells with the CD34+ CD45RAlo CD71lo phenotype expressing IL-1 beta mRNA. IL-1 beta expression was also consistently observed from day 0 to day 9 in liquid cultures of cord-blood-derived CD34+ CD45RAlo CD71lo Thy-1+ or Thy-1- cells. The cultures contained the same combination of cytokines and resulted in an expansion of cell numbers of up to 400-fold. GM-CSF mRNA was not detected in the equivalent of 75 cells at any day, even though it could be detected with high sensitivity in control stromal cells. Because IL-1 beta is a powerful and pleiotropic biomodulator of cytokines and adhesion molecules, our observations suggest that at least some primitive hematopoietic cells do not merely respond passively to signals from their environment, but may themselves regulate the paracrine production of cytokines from neighboring stromal cells.(ABSTRACT TRUNCATED AT 400 WORDS).


2009 ◽  
pp. 247-252
Author(s):  
M Hofer ◽  
A Vacek ◽  
M Pospíšil ◽  
J Holá ◽  
D Štreitová ◽  
...  

Adenosine A3 receptor agonist N6-(3-iodobenzyl)adenosine-5’-Nmethyluronamide (IB-MECA) has been tested from the point of view of potentiating the effects of hematopoietic growth factors interleukin-3 (IL-3), stem cell factor (SCF), granulocytemacrophage colony-stimulating factor (GM-CSF), and granulocyte colony-stimulating factor (G-CSF) on the growth of hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in suspension of normal mouse bone marrow cells in vitro. IB-MECA alone induced no GM-CFC growth. Significant elevation of numbers of GM-CFC evoked by the combinations of IB-MECA with IL-3, SCF, or GM-CSF as compared with these growth factors alone has been noted. Combination of IB-MECA with G-CSF did not induce significantly higher numbers of GM-CFC in comparison with G-CSF alone. Joint action of three drugs, namely of IB-MECA + IL-3 + GM-CSF, produced significantly higher numbers of GM-CFC in comparison with the combinations of IB-MECA + IL-3, IB-MECA + GM-CSF, or IL-3 + GM-CSF. These results give evidence of a significant role of selective activation of adenosine A3 receptors in stimulation of the growth of granulocyte/ macrophage hematopoietic progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document