scholarly journals Differentiation and proliferation of hematopoietic stem cells

Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 2844-2853 ◽  
Author(s):  
M Ogawa

Abstract Available evidence indicates that qualitative changes in hematopoietic stem cells and progenitors, such as the decision of stem cells to self- renew or differentiate, or selection of lineage potentials by the multipotential progenitors during differentiation (commitment), are intrinsic properties of the progenitors and are stochastic in nature. In-contrast, proliferative kinetics of the progenitors, namely survival and expansion of the progenitors, appear to be controlled by a number of interacting cytokines. While proliferation and maturation of committed progenitors is controlled by late-acting lineage-specific factors such as Ep, M-CSF, G-CSF, and IL-5, progenitors at earlier stages of development are controlled by a group of several overlapping cytokines. IL-3, GM-CSF, and IL-4 regulate proliferation of multipotential progenitors only after they exit from G0 and begin active cell proliferation. Triggering of cycling by dormant primitive progenitors and maintenance of B-cell potential of the primitive progenitors appears to require interactions of early acting cytokines including IL-6, G-CSF, IL-11, IL-12, LIF, and SF. Currently, this simple model fits our understanding of the interactions of growth factors with hematopoietic progenitors. Naturally the model risks oversimplification of a very complex process. However, because the model is testable, it will hopefully challenge investigators to design new experiments to examine its validity.

Blood ◽  
1993 ◽  
Vol 81 (11) ◽  
pp. 2844-2853 ◽  
Author(s):  
M Ogawa

Available evidence indicates that qualitative changes in hematopoietic stem cells and progenitors, such as the decision of stem cells to self- renew or differentiate, or selection of lineage potentials by the multipotential progenitors during differentiation (commitment), are intrinsic properties of the progenitors and are stochastic in nature. In-contrast, proliferative kinetics of the progenitors, namely survival and expansion of the progenitors, appear to be controlled by a number of interacting cytokines. While proliferation and maturation of committed progenitors is controlled by late-acting lineage-specific factors such as Ep, M-CSF, G-CSF, and IL-5, progenitors at earlier stages of development are controlled by a group of several overlapping cytokines. IL-3, GM-CSF, and IL-4 regulate proliferation of multipotential progenitors only after they exit from G0 and begin active cell proliferation. Triggering of cycling by dormant primitive progenitors and maintenance of B-cell potential of the primitive progenitors appears to require interactions of early acting cytokines including IL-6, G-CSF, IL-11, IL-12, LIF, and SF. Currently, this simple model fits our understanding of the interactions of growth factors with hematopoietic progenitors. Naturally the model risks oversimplification of a very complex process. However, because the model is testable, it will hopefully challenge investigators to design new experiments to examine its validity.


1996 ◽  
Vol 183 (3) ◽  
pp. 1141-1150 ◽  
Author(s):  
C E Müller-Sieburg ◽  
R Riblet

The genetic elements that govern the differentiation and proliferation of hematopoietic stem cells remain to be defined. We describe here marked strain-specific differences in the frequency of long-term culture-initiating cells (LTC-IC) in the bone marrow of different strains of mice. Mice of C57Bl/6 background showed the lowest levels of stem cells in marrow, averaging 2.4 +/- .06 LTC-IC/10(5) cells, BALB/c is intermediate (9.1 +/- 4.2/10(5) cells), and DBA/2 mice contained a 11-fold higher frequency of LTC-IC (28.1 +/- 16.5/10(5) cells) than C57Bl/6 mice. The genetic factors affecting the size of the stem cell pool were analyzed in the C57Bl/6 X DBA/2 recombinant inbred strains; LTC-IC frequencies ranged widely, indicating that stem cell frequencies are controlled by multiple genes. Quantitative trait linkage analysis suggested that two loci that have major quantitative effects are located on chromosome 1 near Adprp and Acrg, respectively. The mapping of the locus near Adprp was confirmed by finding an elevated stem cell frequency in B6.C-H25, a C57Bl/6 congenic strain that carries a portion of chromosome 1 derived from BALB/c mice. We have named this gene Scfr1 (stem cell frequency regulator 1). The allelic forms of this gene may be an important predictor of stem cell number and thus would be useful for evaluating cell sources in clinical stem cell transplantation.


2007 ◽  
Vol 22 (2) ◽  
pp. 242 ◽  
Author(s):  
Jin-Yeong Han ◽  
Rhee Young Goh ◽  
Su Yeong Seo ◽  
Tae Ho Hwang ◽  
Hyuk Chan Kwon ◽  
...  

Transfusion ◽  
2008 ◽  
Vol 48 (3) ◽  
pp. 561-566 ◽  
Author(s):  
Hirofumi Yura ◽  
Yasuhiro Kanatani ◽  
Masayuki Ishihara ◽  
Bonpei Takase ◽  
Masaki Nambu ◽  
...  

1978 ◽  
Vol 85 (2) ◽  
pp. 221-222
Author(s):  
T. V. Osipova ◽  
V. M. Bukhman ◽  
G. Ya. Svet-Moldavskii

Sign in / Sign up

Export Citation Format

Share Document